博碩士論文 109226059 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:18.225.209.95
姓名 黃崑豪(Kun-Hao Huang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 多波繞射疊加訊號法之參考光位置誤差分析
(The Analysis of Reference-beam Position Error in Multi-page Superposed Signal Method)
相關論文
★ 氮化鋁鎵深紫外光發光二極體高光效之封裝研究★ 複雜波前體積全像強繞射計算模型之研究
★ 利用編碼孔徑之高亮度高光譜成像系統★ 應用DMD提高幀率之數位光學相位共軛投影系統之研究
★ 應用四步相移解碼多階相位之消除碟片位移雜訊之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-9-1以後開放)
摘要(中) 本論文中,我們嘗試提出一個全新全像儲存方法,其稱作多波繞射疊加訊號法。此理論是利用柱狀波參考光在布拉格簡併方向上的發散球面波為參考光進行記錄,並在讀取時透過將簡併方向的發散球面波錯位使得繞射光在簡併方向上產生球面波相位差。此球面波相位差會因為讀取位置而改變,因此我們透過多重曝光及設計各頁相位調製訊號,來控制在不同讀取位置下的多波繞射疊加訊號光的光強度大小。
首先我們以全像術理論來介紹此項理論,再藉由相位疊加法與純量繞射理論建立離軸式全像儲存系統的計算模型。最後分析在紀錄時不同軸向的誤差對於系統的訊雜比變化,以作為此系統的容忍度評估標準。
摘要(英) In this thesis, we try to promote a holographic data storage method that called Multi-page superposed signal changed with reading position. This theory is use cylindrical wave as reference light for recording. The cylindrical wave is a diverging spherical wave in the direction of Bragg degeneracy direction, and the signal beam is a plane wave. When reading, the divergent spherical wave in the degenerate direction is misaligned so that the diffracted light produces a spherical surface in the degenerate direction. This phase difference will change depending on the reading position. Therefore, by using multiple exposures and designing phase modulation signals for each page, we can control the multi-page superposed signal at different reading position.
First, we introduce this theory with the theory of holography, and then establish the calculation model of the off-axis holographic storage system based on Based on the scalar diffraction theory and VOHIL model. At the end, we analyzes the changes in the signal-to-noise ratio of the system from the errors of different axes during recording to serve as the system′s tolerance evaluation standard.
關鍵字(中) ★ 體積全像
★ 全像
★ 儲存
關鍵字(英) ★ Volume holographic
論文目次 摘要 I
Abstract VI
致謝 VII
目錄 VIII
圖目錄 XII
表目錄 XVII
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 4
1-3 論文大綱 5
第二章 原理介紹 6
2-1 全像術理論 6
2-2 耦合波理論 9
2-2-1 布拉格條件 9
2-2-2 耦合波理論 12
2-2-3 布拉格匹配 17
2-3 相位疊加法 18
2-4 角譜傳遞法 22
2-5 Gerchberg–Saxton algorithm 24
2-5-1 校正Gerchberg–Saxton algorithm 25
2-6 近距離下之Fresnel transform 26
2-7 同差檢測法 29
2-8 M/# 30
2-9 訊雜比 34
第三章 多光源之多波繞射疊加訊號法 35
3-1 多光源之多波繞射疊加訊號法原理 38
3-2 參考光體積全像元件設計 47
3-3 多光源之多波繞射疊加訊號實驗平台之設計 51
3-4 建立離軸式全像儲存系統計算模型 54
3-4-1 同軸式體積全像儲存計算模型 55
3-4-2 離軸式全像儲存系統計算模型 61
第四章 離軸式全像儲存系統計算模型驗證 63
4-1 單光源之多波繞射疊加訊號原理 63
4-2 離軸式全像儲存系統計算模型實驗驗證 68
4-2-1 目標訊號設計 69
4-2-2 離軸全像儲存系統實驗平台之建立 70
4-2-3 參考光發散距離量測 72
4-2-4 Gerchberg–Saxton algorithm 74
4-2-5 單光源之多波繞射疊加訊號實驗驗證與模擬結果 80
4-3 多波繞射疊加訊號法模擬 82
4-3-1 體積全像儲存系統模擬環境 83
4-3-2 模擬結果 86
4-4 多光源之多波繞射訊號模擬結果分析 89
第五章 參考光位置誤差模擬與容忍度分析 94
5-1 參考光發散距離誤差容忍度分析 94
5-2 碟片記錄位置誤差容忍度分析 100
5-3 參考光非簡併方向紀錄偏差容忍度分析 105
第六章 結論 109
參考文獻 111
中英名詞對照表 115
參考文獻 [1] H. Coufal, and G. W. Burr, “Optical data storage,” International Trends in Applied Optics, 609-629 (2002).
[2] J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 2002).
[3] E. Hecht, Optics (Addison Wesley, 2002).
[4] H. D. Storage, “HJ Coufal, D. Psaltis, and GT Sincerbox,” Springer Series in Optical Sciences, Springer Verlag Berlin (2000).
[5] G. W. Burr, “Holographic storage, ” Encyclopedia of Optical Engineering, 710-734 (2003).
[6] L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” Proc. IEEE 92, 1231-1280 (2004).
[7] K. Anderson, and K. Curtis, “Polytopic multiplexing,” Opt. Lett. 29, 1402-1404 (2004).
[8] R. Fujimura, T. Shimura, and K. Kuroda, “Multiplexing capability in polychromatic reconstruction with selective detection method,” Opt. Express 18, 1091-1098 (2010).
[9] T. Ochiai, D. Barada, T. Fukuda, Y. Hayasaki, K. Kuroda, and T. Yatagai, “Angular multiplex recording of data pages by dual-channel polarization holography,” Opt. Lett. 38, 748-750 (2013).
[10] J. Zang, G. Kang, P. Li, Y. Liu, F. Fan, Y. Hong, Y. Huang, X. Tan, T. Shimura, and K. Kuroda, “Dual-channel recording based on the null reconstruction effect of orthogonal linear polarization holography,” Opt. Lett. 42, 1377-1380 (2017).
[11] G. Barbastathis, M. Levene, and D. Psaltis, “Shift multiplexing with spherical reference waves,” Appl. Opt. 35, 2403-2417 (1996).
[12] H. Y. S. Li, and D. Psaltis, “Three-dimensional holographic disks,” Appl. Opt. 33, 3764-3774 (1994).
[13] T. C. Teng, Y. W. Yu, and C. C. Sun, “Enlarging multiplexing capacity with reduced radial cross talk in volume holographic discs,” Opt. Express 14, 3187-3192 (2006).
[14] T. Nobukawa, Y. Wani, and T. Nomura, “Multiplexed recording with uncorrelated computer-generated reference patterns in coaxial holographic data storage,” Opt. Lett. 40, 2161-2164 (2015).
[15] C. Li, L. Cao, Z. Wang, and G. Jin, “Hybrid polarization-angle multiplexing for volume holography in gold nanoparticle-doped photopolymer,” Opt. Lett. 39, 6891-6894 (2014).
[16] C. C. Sun, and W. C. Su, “Three-dimensional shifting selectivity of random phase encoding in volume holograms,” Appl. Opt. 40, 1253-1260 (2001).
[17] O. Matoba, and B. Javidi, “Encrypted optical storage with angular multiplexing,” Appl. Opt. 38, 7288-7293 (1999).
[18] D. Gabor, “A new microscopic principle,” nature 161, 777-778 (1948).
[19] P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2, 393-400 (1963).
[20] B. Booth, “Photopolymer material for holography,” Appl. Opt. 14, 593-601 (1975).
[21] A. Pu, and D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35, 2389-2398 (1996).
[22] K. Curtis, A. Pu, and D. Psaltis, “Method for holographic storage using peristrophic multiplexing,” Opt. Lett. 19, 993-994 (1994).
[23] S. H. Lin, K. Y. Hsu, W. Z. Chen, and W. T. Whang, “Phenanthrenequinone-doped poly (methyl methacrylate) photopolymer bulk for volume holographic data storage,” Opt. Lett. 25, 451-453 (2000).
[24] K. Y. Hsu, S. H. Lin, Y. N. Hsiao, and W. T. Whang, “Experimental characterization of phenanthrenequinone-doped poly (methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390-1396 (2003).
[25] Y. N. Hsiao, W. T. Whang, and S. H. Lin, “Analyses on physical mechanism of holographic recording in phenanthrenequinone-doped poly (methyl methacrylate) hybrid materials,” Opt. Eng. 43, 1993-2002 (2004).
[26] J. Mumbru, I. Solomatine, D. Psaltis, S. H. Lin, K. Y. Hsu, W.-Z. Chen, and W. T. Whang, “Comparison of the recording dynamics of phenanthrenequinone-doped poly (methyl methacrylate) materials,” Opt. Commun. 194, 103-108 (2001).
[27] G. W. Burr, F. H. Mok, and D. Psaltis, “Angle and space multiplexed holographic storage using the 90 geometry,” Opt. Commun. 117, 49-55 (1995).
[28] F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915-917 (1993).
[29] W. C. Su, Y. W. Chen, C. C. Sun, and Y. Ouyang, “Multilayer storage in a shift-multiplexed holographic disk,” Opt. Eng. 42, 1528-1529 (2003).
[30] G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471-1473 (1992).
[31] S. Yin, H. Zhou, F. Zhao, M. Wen, Z. Yang, J. Zhang, and T. Francis, “Wavelength multiplexed holographic storage in a sensitive photorefractive crystal using a visible-light tunable diode laser,” Opt. Commun. 101, 317-321 (1993).
[32] C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171-176 (1991).
[33] J. Heanue, M. Bashaw, and L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Appl. Opt. 34, 6012-6015 (1995).
[34] C. C. Sun, W. C. Su, B. Wang, and Y. OuYang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67-74 (2000).
[35] E. Leith, A. Kozma, J. Upatnieks, J. Marks, and N. Massey, “Holographic data storage in three-dimensional media,” Appl. Opt. 5, 1303-1311 (1966).
[36] S. S. Orlov, W. Phillips, E. Bjornson, Y. Takashima, P. Sundaram, L. Hesselink, R. Okas, D. Kwan, and R. Snyder, “High-transfer-rate high-capacity holographic disk data-storage system,” Appl. Opt. 43, 4902-4914 (2004).
[37] H. Horimai, and X. Tan, “Collinear technology for a holographic versatile disk,” Appl. Opt. 45, 910-914 (2006).
[38] H. Horimai, and X. Tan, “Advanced collinear holography,” Opt. Rev. 12, 90-92 (2005).
[39] H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44, 2575-2579 (2005).
[40] H. Horimai, and J. Li, “A novel collinear optical setup for holographic data storage system,” in Optical Data Storage 2004(International Society for Optics and Photonics2004), pp. 297-303.
[41] W. Klein, “Theoretical efficiency of Bragg devices,” Proc. IEEE 54, 803-804 (1966).
[42] P. Yeh, Introduction to photorefractive nonlinear optics (Wiley-Interscience, 1993).
[43] A. Yariv, and P. Yeh, Optical waves in crystals (Wiley New York, 1984).
[44] C. C. Sun, “Simplified model for diffraction analysis of volume holograms,” Opt. Eng. 42, 1184-1185 (2003).
[45] R. W. Gerchberg, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik 35, 237-246 (1972).
[46] H. Carleton, and W. Maloney, “A balanced optical heterodyne detector,” Appl. Opt. 7, 1241-1243 (1968).
[47] J. H. McElroy, “Infrared heterodyne solar radiometry,” Appl. Opt. 11, 1619-1622 (1972).
[48] H. P. Yuen, and V. W. Chan, “Noise in homodyne and heterodyne detection,” Opt. Lett. 8, 177-179 (1983).
[49] M. Collett, R. Loudon, and C. Gardiner, “Quantum theory of optical homodyne and heterodyne detection,” J. Mod. Opt. 34, 881-902 (1987).
[50] M.-P. Bernal, G. W. Burr, H. Coufal, and M. Quintanilla, “Balancing interpixel cross talk and detector noise to optimize areal density in holographic storage systems,” Appl. Opt. 37, 5377–5385 (1998).
[51] S. S. Orlov, W. P. , E. Bjornson, Y. Takashima, P. Sundaram, “High-transfer-rate high-capacity holographic disk data-storage system,” Appl. Opt. 43, 4902-4914 (2004).
[52] ISO, I, “12232: Photography-Electronic Still Picture Cameras: Determination of ISO Speed,” International Organization for Standardization, Geneva, Switzerland (1997)..
[53] C. C. Sun, Y. W. Yu, S. C. Hsieh, T. C. Teng, and M. F. Tsai, “Point spread function of a collinear holographic storage system,” Opt. Express 15, 18111-18118 (2007).
[54] 余業緯 , 同軸全像儲存系統之特性與改良及溫度補償, 國立中央大學光電所博士論文,中華民國九十八年
[55] 鄭智元 , 同軸式全像儲存系統記錄介質具有離焦之研究, 國立中央大學光電所博士論文,中華民國一百零四年
指導教授 孫慶成 楊宗勳 余業緯(Ching-Cherng Sun Tsung-Hsun Yang Yeh-Wei Yu) 審核日期 2021-10-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明