博碩士論文 109322032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.215.16.238
姓名 潘樹楠(Shu-Nam Poon)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 初探橡膠粒砂土混合物的力學性質
相關論文
★ 以離心振動臺試驗模擬緩衝材料中廢棄物罐之振動反應★ 緩衝材料在不同圍壓下之工程性質
★ 具不同上部結構之樁基礎受振行為★ 基盤土壤液化對上方土堤位移的影響
★ 回填與緩衝材料之動態強度★ 砂質土壤中柔性擋土牆在動態載重下的行為
★ Effect of Vertical Drain Methods on The Soil Liquefaction★ Centrifuge Modelling on Failure Behaviours of Sandy Slope Caused by Gravity, Rainfall and Earthquake
★ 微生物膠結作用對砂質土壤性質的影響★ 基盤土壤液化引致的側潰對上方土堤之影響及其改善對策
★ 土壤液化引致側向滑移對樁基礎之影響及其對策★ 挖掘機鏟斗上土壤黏附問題的基礎研究
★ 低放射性廢棄物最終處置回填材料於不同配比下之工程力學特性★ 以離心振動台試驗探討 基盤振動方向與坡向夾角對側向滑移之反應
★ 應用時域反射法於地層下陷監測之改善研發★ Seismic response of sheet pile walls with and without anchors by centrifuge modeling tests
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 橡膠粒砂土混合物(Rubber Sand Mixture)中所使用的橡膠粒來源廣泛,其中汽車廢棄輪胎是材料來源之一,根據中華民國環境部2022的統計資料,台灣於2022年產生約15萬公噸的廢棄輪胎,而RSM技術能有效再利用廢棄輪胎,作為建築物基礎,以緩解和減少建築物因地震導致的損壞,從而達到可持續發展。因此本研究採用石英細砂及D_50=0.55 mm及D_50=3.00 mm的橡膠粒為試驗材料,以不同橡膠粒配比及粒徑作為變因,進行壓密-不排水三軸試驗,探討砂土和橡膠粒砂土混合物在不同橡膠粒配比及粒徑條件下之力學性質及其關聯性,同時進行動力三軸試驗,探討砂土和橡膠粒砂土混合物降低液化發生的可能性之能力。
試驗結果顯示,抗剪強度、視凝聚力、磨擦角、單位重及最佳含水量均與橡膠粒粒徑及配比相關。橡膠粒砂土混合物的抗剪強度之主要影響因素為有效圍壓、橡膠粒配比及橡膠粒平均粒徑;以橡膠粒配比作為控制變因的條件下,橡膠粒平均粒徑為3.00 mm的橡膠粒砂土混合物具較高抗剪強度;單位重及最佳含水量與橡膠粒配比存在負相關,平均粒徑3.00 mm的橡膠粒砂土混合物具較高單位重及最佳含水量; 視凝聚力會以先升後降之3次方程式形態出現,而磨擦角則隨橡膠粒配比上升而下降,可以2次方程進行迴歸,橡膠粒平均粒徑較高的橡膠粒砂土混合物具較高視凝聚力及磨擦角。在彈性模數方面,E0,E50及E100均隨橡膠粒重量配比上升而下降。在 E50方面,橡膠粒平均粒徑0.55 mm的混合物,其E50會於混合物中的橡膠粒重量配比達20 %後趨向穩定。在降低液化發生的可能性之能力之能力方面,橡膠粒重量配比為40 %的混合物能有效降低CSR= 0.1、0.2及0.3的反覆加載所帶來的液化發生的可能性,但對於CSR=0.4的反覆加載其降低液化發生的可能性之能力較弱。在彈性模數方面,E0、E50及E100於CSR=0.1的反覆加載條件下,其下降幅度最低,而E0、E50及E100於CSR=0.2、0.3及0.4的反覆加載條件下,其下降幅度相似。
摘要(英) The sources of rubber granules used in rubber sand mixture (RSM) are various, including discarded automobile tires. According to the data from the Ministry of Environment in Taiwan, there were about 150,000 tons of discarded automobile tires in 2022. However, RSM technology can effectively reuse waste tires while mitigating and reducing damage to buildings caused by earthquakes, thereby achieving sustainable development. Therefore, this study uses quartz fine sand and rubber particles of D50=0.55 mm and D50=3.00 mm as test materials, with different rubber content and particle sizes as variables to explore the mechanical properties of the rubber sand mixtures by conducting the consolidated undrained triaxial tests. On the other hand, the Cyclic triaxial tests are conducted to explore the liquefaction resistance of rubber sand mixtures.
The test results show that the main influencing factors of the shear strength of the rubber sand mixture are the effective confining pressure, the rubber content and the average particle size of the rubber particles. Under the same rubber content, the rubber sand mixture with 3.00 mm average particle size of the rubber particles has higher shear strength. The unit weight and optimal water content decrease as the rubber particle ratio increases. The rubber sand mixture with D50=3.00 mm has a higher unit weight and optimal moisture content; the apparent cohesion appears in the form of rising first and then falling, and the friction angle decreases as the rubber content increases. On the aspect of elastic modulus, E0, E50 and E100 indicate the rubber sand mixtures with D50=0.55 mm rubber granules have lower elastic modulus. Moreover, the E50 of the mixture with D50=0.55 mm tends to be stable in a lower rubber content. The rubber sand mixture with a higher average particle size of rubber particles has a higher apparent cohesion and friction angle. On the other hand, a rubber sand mixture with 40 % rubber content can effectively reduce the risk of liquefaction caused by the cyclic loading with CSR=0.1, 0.2 and 0.3, but its liquefaction resistance against cyclic loading with CSR=0.4 is weak. On the aspect of elastic modulus, the test condition with CSR=0.1, the decline in elastic modulus is the slowest in this test, and additionally, the tendency of the elastic modulus with test condition CSR=0.2, 0.3 and 0.4 respectively is close to one another.
關鍵字(中) ★ 橡膠粒砂土混合物
★ 壓密-不排水三軸試驗
★ 動力三軸試驗
★ 力學性質
關鍵字(英) ★ Rubber Sand Mixture
★ static triaxial tests
★ cyclic triaxial tests
★ mechanical properties
★ liquefaction resistance
論文目次 摘要 ..............................................................................................................................ii
ABSTRACT..................................................................................................................iii
目錄 .............................................................................................................................iv
圖表目錄......................................................................................................................vii
表目錄 ........................................................................................................................xii
符號說明.....................................................................................................................xiii
第一章 緒論..................................................................................................................1
1.1 研究動機.............................................................................................................1
1.2 研究目的.............................................................................................................1
1.3 研究方法.............................................................................................................1
1.4 論文內容.............................................................................................................2
第二章 文獻回顧 ........................................................................................................3
2.1砂土液化………………………………………………………………………..3
2.1.1液化定義與機制…………………………………………………………...3
2.2橡膠粒砂土混合物……………………………………………………………..4
2.2.1工程橡膠種類……………………………………………………………...4
2.2.2橡膠粒砂土混合物之性質…………………………………………….......4
2.3三軸試驗之破壞標準選擇……………………………………………………..9
2.4小結(一)………………………………………………………………………....9
第三章土樣與試驗方法……………………………………………………………..12
3.1 試驗砂樣與橡膠粒料………………………………………………………...12
3.1.1 號石英細砂基本質………………………………………………………15
3.1.2 橡膠粒基本性(D50=3.00 mm) …………………………………………...17
3.1.3 橡膠粒基本性質(D50=0.55 mm) ………………………………………...17
3.1.4 混合材料…………………………………………………………………18
3.2 橡膠粒砂土混合物試體製作………………………………………………...20
3.2.1 試體重模設備……………………………………………………………20
3.2.2 橡膠粒砂土混合物試體製作步驟……………………………………....21
3.2.3 橡膠粒砂土混合物試驗因子組合……………………………………....22
3.3 試驗方式及試驗儀…………………………………………………………...24
3.3.1動力三軸儀器…………………………………………………………….24
3.3.1.2正弦氣壓式控制系統………………………………………………..26
3.3.1.3量測系統及訊號調節器…………………………………………..…28
3.3.1.4室壓供應系統………………………………………………………..33
3.3.1.5反水壓供應系統……………………………………………………..34
3.3.2三軸室…………………………………………………………….............36
3.3.3 壓密-不排水三軸試驗…………………………………………...............36
3.3.4試驗控制條件…………………………………………………………….37
3.4 壓密-不排水三軸試驗步驟與流程…………………………………………..39
3.4.1 壓密-不排水三軸試驗步驟……………………………………………...39
3.4.2 儀器校正階段……………………………………………………………39
3.4.3儀器準備階段…………………………………………………………….40
3.4.4試體飽和階段…………………………………………………………….40
3.4.5試體壓密階段…………………………………………………………….41
3.4.6補償荷重………………………………………………………………….41
3.4.7靜態加載階段…………………………………………………………….42
3.4.8壓密-不排水三軸試驗數據整理…………………………………………42
3.5動力三軸試驗步驟………………………………………………………........44
3.5.1動態加載階段…………………………………………………………….44
3.5.2動力三軸試驗數據整理………………………………………………….44
第四章試驗結果與分析……………………………………………………………..46
4.1基礎物理試驗結果……………………………………………………………46
4.1.1橡膠粒配比及粒徑對最佳含水量的影響……………………………….46
4.1.2橡膠粒配比及粒徑對單位重的影響…………………………………….52
4.1.3橡膠粒配比對最佳含水量的影………………………………………….53
4.1.4橡膠粒配比和粒徑對單位重的影響………………………….................53
4.2壓密-不排水三軸試驗之試驗結果與分析……………………………….......55
4.2.1壓密-不排水三軸試驗之軸差應力與軸向應變關係曲線………………55
4.2.1.1橡膠粒配比對軸差應力與軸向應變關係曲線之影響……………..55
4.2.1.2橡膠粒粒徑對軸差應力與軸向應變關係曲線之影響……………..55
4.2.1.3圍壓對軸差應力與軸向應變關係曲線之影響……………………..56
4.3超額孔隙水壓與軸向應變關係曲線…………………………………………62
4.3.1橡膠粒配比對超額孔隙水壓與軸向應變關係曲線之影響…………….62
4.3.2橡膠粒粒徑對超額孔隙水壓與軸向應變關係曲線之影響…………….63
4.4橡膠粒砂土混合物的視凝聚力與有效內摩擦角…………………………....69
4.4.1橡膠粒配比對視凝聚力與有效內摩擦角之影響……………….............69
4.4.2橡膠粒粒徑對有效凝聚力與有效內摩擦角之影響…………………….70
4.5壓密-不排水三軸試驗應力路徑……………………………………………...76
4.5.1橡膠粒配比對壓密-不排水三軸試驗應力路徑之影響…………………76
4.5.2 橡膠粒粒徑對壓密-不排水三軸試驗應力路徑之影響………………...82
4.6橡膠粒砂土混合物的E0、E50及E100………………………………………..82
4.6.1橡膠粒配比對的E0、E50及E100之影響………………………………..83
4.6.2橡膠粒粒徑對E0、E50及E100之影響……………………………………..84
4.7動力三軸試驗之試驗結果與分析………………………………………........88
4.7.1液化時反覆作用週期數……………………………………………….....89
4.7.2超額孔隙水壓之激發………………………………………….……........89
4.7.3應力路徑………………………………………………………………….90
4.7.4 CSR及作用週期數對E0及E50之影響………………………………….95
4.8 剪力模數…………………………………………………………………...98
4.9小結(二)……………………………………………………………………...100
第五章 結論與建議……………………………………………………………......102
5.1結論…………………………………………………………………………..102
5.2 建議………………………………………………………………………….103
參考文獻…………………………………………………………………………....104
參考文獻 1. ASTM C127-15, “Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate,” Annual Book of ASTM Standards, Vol. 04.02., pp. 1-5 (2019)
2. ASTM C136-19, “Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates,” Annual Book of ASTM Standards, Vol. 04.02., pp. 1-5 (2019)
3. ASTM D1557-12, “Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort,” Annual Book of ASTM Standards, Vol. 04.08., pp. 1-14 (2012)
4. ASTM D4767-11, “Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils,” Annual Book of ASTM Standards, Vol. 04.08., pp. 1-14 (2011)
5. ASTM D5311-92, “Standard Test Method for Load Controlled Cyclic Triaxial Strength of Soil,” Annual Book of ASTM Standards, Vol. 04.08., pp. 1-10 (1992)
6. ASTM D6270-08, “Standard Practice for Use of Scrap Tires in Civil Engineering Applications,” Annual Book of ASTM Standards, Vol. 11.04., pp. 1-22 (2012)
7. Amuthan, M.S., Adimoolam, B., and Banerjee, S.,“Undrained cyclic responses of granulated rubber sand mixtures.” Soils and Foundations, Vol. 60, pp. 871–885, (2020).
8. Benjelloun, M., Bouferra, R., Ibouh, H., Jamin, F., Benessalah, I., and Arab, A., “Mechanical Behavior of Sand Mixed with Rubber Aggregates,” Applied Sciences, Vol. 11395, No.11, pp.1-19(2021).
9. Committee on Soil Dynamics of the Geotechnical Engineering Division., “Definition of Terms Related to Liquefaction,”Journal of the Geotechnical Engineering Division Volume, Vol. 104, No.9, pp. 1197–1200 (1978).
10. Gerard, B., and Vrettos, C., “Sand–tyre chips mixtures in undrained and drained cyclic triaxial tests,” Proceedings of the Institution of Civil Engineers – Ground Improvement, Vol. 175, No. 1, pp. 23-33(2022).
11. Imtiaz, A., “Laboratory study on properties of rubber soils,” JTRP Technical Report, Purdue University, West Lafayette, U.S.A., pp. 1-394(1993).
12. Lech, B., and Gotteland, P., “ Characteristics of Tyre Chips-Sand Mixtures from Triaxial Tests,” Archives of Hydro-Engineering and Environmental Mechanics, Vol. 54, No. 1, pp. 3–14(2007).
13. Maria, M.S., “Monotonic and Cyclic Behaviour of Sand-Tyre Chip (STCh) Mixtures,”Ph.D. Dissertation, Department of Engineering, University of Wollongong, New South Wales, Australia (2014).
14. Mashiri, S., Vinod, J.S., Sheikha, N., and Tsang, H.H., “Shear strength and dilatancy behaviour of sand–tyre chip mixtures,” Soils and Foundations, Vol. 55, No. 3, pp. 517–528, (2015).
15. Panu, P.,“Liquefaction of Sand-Type Chip Mixture,”Ph.D. Dissertation, Department of Civil and Structural Engineering, University of Sheffield, South Yorkshire, England (2009).
16. Rami, El.S., Youssef, A., and Hani, L., “Triaxial Testing on Saturated Mixtures Of Sand Granulated Rubber,”Proceedings of Geo-Congress, San Diego, California, United States of America, Paper No.9(2013)
17. Zornberg, J.G., Cabral, A.R., Viratjandr, C., “Behaviour of tire shred - Sand mixtures,” Canadian Geotechnical Journal, Vol. 41, No. 3, pp. 227-241, (2004)
指導教授 洪汶宜(Wen-Yi Hung) 審核日期 2024-1-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明