博碩士論文 109322038 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:85 、訪客IP:3.144.102.237
姓名 劉芊妤(Chien-Yu Liu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 岩坡崩塌行為與臨界斜交角之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 岩坡因不連續面與坡面之傾向關係,可能形成順向坡、斜交坡及逆向坡,其工程行為截然不同,因工程配置方位與不連續面位態之關係亦將顯著影響岩體的工程特性的差異,稱為岩體工程行為之異向性(anisotropy of engineering behaviors)。
斜交角之分析及模擬係屬三維問題,本文採用數值軟體PFC3D(Particle Flow Code in three Dimension)建立一套生成BPM(Bonded Particle Model)配合DFN(Discrete Fracture Network)建構具有一組不連續面之合成岩體邊坡模型,能合理模擬岩坡之力學行為。本文透過參數研究,包括:斜交角(不連續面傾向alpha_j與坡面傾向alpha_s之夾角, left|alpha_j-alpha_s
ight|)、坡角(
eta_s)、坡高(H)、不連續面傾角(
eta_j)及摩擦角emptyset_j,探討在不同斜交角下,平面破壞(planar failure)及傾覆破壞(toppling failure)之崩塌行為。根據數值模擬結果,求取崩塌體之波及範圍、位移方向及崩塌能量,並以崩塌能量為量化指標,決定平面破壞之臨界斜交角及傾覆破壞之臨界逆斜交角。
研究結果顯示:(1)當岩坡符合不連續面摩擦角≧30˚、坡角≦75˚、坡高≦60m之條件時,其臨界斜交角均≦20˚。此一結果與一般工程實務及技術規範揭示當斜交角小於20˚時,易發生順向坡平面破壞的經驗一致。然而,當岩坡具不利因子時,即高坡角、大坡高、中等不連續面傾角及不連續面低摩擦角,其臨界斜交角有可能超過20˚,尤其不連續面摩擦角10˚時,臨界斜交角接近40˚。(2)根據傾覆破壞模擬結果,其臨界逆斜交角均<mathrm{30°。此一結果與一般工程實務及技術規範揭示當逆斜交角小於30˚時,易發生逆向坡傾覆破壞的經驗相符。然而,當岩坡具不利因子時,即高坡角、高不連續面傾角及低不連續面摩擦角,其臨界逆斜交角有可能超過30˚,尤其不連續面傾角mathrm{75˚,其臨界逆斜交角接近50˚。(3)當岩坡滿足平面破壞三條件,即平行度條件(left|alpha_j-alpha_s
ight|<left|alpha_j-alpha_s
ight|_{cri})、見光條件(βs>βj)及滑動條件(βj>∅j)時,隨不連續面傾角增加,位態評分調整扣分及崩塌能量先增後減,兩者分析方法趨勢相似,其結果與潛在滑動體積相關,且能反映災害程度。然而,以極限平衡分析狹義順向坡(left|alpha_j-alpha_s
ight|=0°)分析岩坡穩定性,不連續面傾角越大,安全係數越小。此一現象未能反應潛在滑動體積。(4)傾覆破壞分析結果顯示,不連續面傾角增加,崩塌能量越大,反之亦然。根據極限平衡法對狹義逆向坡(left|alpha_j-alpha_s
ight|=mathrm{180}°)穩定性分析,隨不連續面傾角增加,安全係數越小。三種分析方法比較結果,趨勢相符皆為一致。(5)斜交角及逆斜交角=0˚,模擬分析得到的崩塌體位移方向與坡面傾向一致。但當斜交角或逆斜交角>0˚,崩塌體之位移方向會介於坡面傾向與不連續面傾向之間。
摘要(英) The dip slope, oblique slope, and anti-dip slope may present different engineering behaviors, which are dominated by the oblique angle defined by the angle between discontinuities and slope orientations on a rock slope. Additionally, the angle between the direction of an engineering configuration and the dip direction of discontinuity also influences the engineering characteristics of a rock slope. These phenomena display the anisotropy of engineering behaviors.
Due to the slope stability analysis on the oblique angle needing a three-dimensional numerical simulation, the Particle Flow Code in Three Dimension (PFC3D) is adopted to simulate a three-dimensional synthetic rock slope model (SRSM) herein, including the parts of intact rocks and discontinuities, which are generated by the bonded particle model (BPM) and the discrete fracture network (DFN), respectively. This simulation technique can successfully simulate the planar and toppling failures that are consistent with the field observations. This paper conducts a series of parametric studies with the oblique angle (the absolute value of the angle between the dip direction of discontinuity, alpha_j, and the dip direction of a slope, alpha_s, left|alpha_j-alpha_s
ight|), the slope angle (eta_s), slope height (H), the dip of discontinuity (eta_j), and the friction angle on SRSM simulations to investigate the influences on engineering behaviors of planar failure and toppling failure by these parameters. In this paper, rock blocks sliding from planar failure or falling from toppling failure are referred to as collapse blocks. The impact area of landslide, the displacement vectors of collapse blocks, and the energy release of landslide are further analyzed during the simulation process. One of the analyzed results, the energy release of landslide, is employed to determine the “critical oblique angle” for planar failure and the “critical inverse oblique angle” for toppling failure.
According to the numerical simulation results, the following conclusions can be drawn: (1) For the planar failure simulated by SRSM under the friction angle of discontinuity ≥ 30˚, the dip of slope ≤ 75˚, and the slope height ≤ 60m conditions, the critical oblique angle simulated by this paper is consistent with the critical oblique angles revealed in engineering practical experiences and the national codes, which appear 20˚. However, the critical oblique angle may exceed 20˚ even near 40˚ when multiple unfavorable factors, i.e., a moderate dip of discontinuity, a steep slope, a tall slope height, and a low friction angle of discontinuity, appear. (2) For the toppling failure simulated by SRSM, the critical inverse oblique angle simulated by this paper is similar to that in engineering practical experiences and the national codes, the former appears 30˚ and the latter appears 30˚. Similarly, the critical inverse oblique angle may exceed 30˚ even near 50˚ when multiple unfavorable factors appear, such as a high dip of discontinuity, a steep slope, and a low friction angle of discontinuity. (3) When rock slope satisfies three conditions of planar failure, i.e., parallelism condition (left|alpha_j-alpha_s
ight|<left|alpha_j-alpha_s
ight|_{cri}), daylight condition(eta_s>eta_j), and sliding condition (eta_j>emptyset_j), the energy release of landslide increases with the decreasing dip of discontinuity and vice versa. (4) For toppling failure simulated by SRSM, the energy release of landslide increases with the increasing dip of discontinuity and vice versa. However, for toppling failure calculated by limited equilibrium analysis, the safety factor of a slope decreases with the increasing dip of discontinuity. (5) When oblique angle and inverse oblique angle=0°, the mean of displacement vectors of collapse blocks is consistent with the dip direction of a slope, and it appears near the middle of the dip direction of a slope and the dip direction of discontinuities under the other conditions.
關鍵字(中) ★ 臨界斜交角
★ 臨界逆斜交角
★ 崩塌能量
★ 岩坡
★ 合成岩體
★ 離散元素法
關鍵字(英) ★ critical oblique angle
★ critical inverse oblique angle
★ rock slope
★ energy release of landslide
★ synthetic rock mass
★ discrete element method
論文目次 摘要 I
ABSTRACT III
致謝 V
目錄 VI
圖目錄 VIII
表目錄 XV
岩坡模型參數符號說明 XVIII
第一章、緒論 1
1.1 研究動機 1
1.2 研究方法與目的 3
1.3 研究架構 5
第二章、文獻回顧 6
2.1 岩坡名詞定義及破壞模態分類 6
2.2 極限平衡分析 19
2.3 岩坡岩體評分法及案例分析 25
2.4 集集地震誘發之大規模山崩地質概況 39
2.5 模型尺寸及邊界條件 44
2.6 探討岩體之表徵單元體積(REV) 47
2.7 合成岩體(Synthetic Rock Mass) 54
第三章、合成岩體邊坡模型建構 62
3.1 研究流程 62
3.2 完整岩石擬合 65
3.3 合成岩體岩坡模型 71
3.4 代表性坡長之決定 78
3.5 岩坡模型尺寸及模擬變因 81
第四章、崩塌行為與臨界斜交角模擬結果 83
4.1 波及範圍 83
4.2 位移方向 96
4.3 岩坡之崩塌能量 103
4.4 臨界斜交角及臨界逆斜交角之決定 117
4.5 臨界斜交角及逆臨界斜交角之影響因子 119
4.6 不同分析方法之比較 125
4.7 低傾角順向坡崩塌案例研析 132
第五章、結論與建議 139
參考文獻 143
參考文獻 內政部(1997),「建築技術規則」。
田永銘、黃致維、黃森暉、裴文彬,(2021)「裂隙岩體隧道、岩坡與基礎之異向性工程行為」,科技部專題研究計畫期中進度報告,MOST 109-2221-E-008-015。
任光正(2022),「裂隙岩體之基礎承載力異向性與變異性」,碩士論文,國立中央大學土木工程學系,中壢https://hdl.handle.net/11296/anpck6
行政院農委會(2010),「水土保持技術規範」。
吳柏翰(2019),「正交性合成岩體之模擬技術」,碩士論文,國立中央大學土木工程學系,中壢。https://hdl.handle.net/11296/du7t6z
李錫堤(2011),「草嶺大崩山之地質與地形演變」,中華水土保持學報,第42期,第325~335頁。https://doi.org/10.29417/jcswc.201112_42(4).0006
林邵儒(2019),「逆向斜交坡中不同節理組特性對楔形岩體變形及破壞機制影響之探討影響」,碩士論文,國立臺灣大學工學院土木工程學系,台北。https://hdl.handle.net/11296/839794
洪如江(2002),「順向坡之破壞與穩定」,地工技術,第94期,第5~18頁。https://doi.org/10.30140/sg.200212.0001
洪如江、李錫堤、林美聆、林銘郎、鄭富醬、陳正興(2000),「天塹可以飛渡、崩山足以斷流(草嶺順向坡滑動)」,地工技術,第77期,第5~18頁。
陳宏宇(2000),「台灣山崩之工程地質特性」,地工技術,第79期,第59~70頁。https://doi.org/10.30140/sg.200006.0005
黃致維(2020),「利用合成岩體模擬橫向等向性岩體之基礎承載力」,碩士論文,國立中央大學土木工程學系,中壢。https://hdl.handle.net/11296/67xh2b
黃清修(2023),「邊界條件對不同斜交角之岩坡崩塌行為影響」,碩士論文,國立中央大學土木工程學系,中壢。https://hdl.handle.net/11296/6v7q3z
黃森暉(2022),「從順向坡至逆向坡之崩塌行為模擬」,碩士論文,國立中央大學土木工程學系,中壢。https://hdl.handle.net/11296/d87t72
黃鑑水、何信昌、劉桓吉(1983),「台灣中部草嶺地區之地質與山崩」經濟部中央地質調查所彙刊,第二號,第95頁~112頁。
http://gis.geo.ncu.edu.tw/GIS/slope/tsaoling/tsaoling.htm
黃宥傑,蘇仁偉,蘇芳郁,王泰典,鄭富書(2021),「板岩邊坡穩定受不連續面影響探討-以田古爾溪口附近為例」,第18屆大地工程學術研究討論會論文集,屏東。
經濟部地質調查及礦業管理中心(地質資料整合查詢)。
廖智偉(2003),「膠結不良砂岩淺基礎模型承載行為」,國立交通大學土木工程系,碩士論文,新竹(2003)。https://hdl.handle.net/11296/4jf77h
劉英助(2002),「人造膠結不良砂岩之模型承載試驗設備建立與淺基礎承載試驗」,國立交通大學土木工程學系,碩士論文,新竹。https://hdl.handle.net/11296/krbk7h
劉家豪(2019),「橫向等向性合成岩體之力學行為及其變異性」,碩士論文,國立中央大學土木工程學系,中壢。https://hdl.handle.net/11296/4qp725
盧育辰(2009),「以UDEC模擬互層材料之力學行為」,碩士論文,國立中央大學土木工程學系,中壢。https://hdl.handle.net/11296/vx9jt4
潘國樑(2007),「工程地質學導論」,科技圖書,第300頁。
Adhikary, D. P., Dyskin, A. V., Jewell, R. J. and Stewart, D. P. (1997) “A study of the mechanism of flexural toppling failures of rock slopes,” J. Rock Mechanics and Rock Engineering, Vol. 30, No.2, pp.75–93.
Anbalagan, R., Sharma, S., & Raghuvanshi, T. K. (1992). “Rock mass stability evaluation using modified SMR approach,” In Proceedings of the 6th National Symposium on Rock Mechanics, pp. 258–268, Bangalore, India.
Bieniawski, Z.T. (1979) “The Geomechanics Classification in Rock Engineering Application,” Proceeding 4th International Congress on Rock Mechanics, Montreux, pp. 41-48.
Bieniawski, Z.T. (1984) “The design process in Rock Engineering,” Rock Mechanics and Rock Engineering, Vol. 17, No. 3, pp. 183–190. https://doi.org/10.1007/BF01042549
Chang, K. J., Taboada, A., Chan, Y. C. (2005) “Geological and morphological study of the Jiufengershan landslide triggered by the Chi-Chi Taiwan earthquake,” Engineering Geology, vol.71, pp.293-309. https://doi.org/10.1016/j.geomorph.2005.02.004
Chen, C. H., Ke, C. C., Wang, C.-L. (2009) “A back-propagation network for the assessment of susceptibility to rock slope failure in the eastern portion of the Southern Cross-Island Highway in Taiwan,” Environmental Geology, Vol. 57, No. 4, pp. 723-733.
https://doi.org/10.1007/s00254-008-1350-9
Copons, R., Vilaplana, J.M., Linares, R. (2009) “Rockfall travel distance analysis by using empirical models (Sola` d’Andorra la Vella, Central Pyrenees), ” Natural Hazards and Earth System Sciences, Vol. 9, pp.2107-2118. https://doi.org/10.5194/nhess-9-2107-2009
Cundall, P. A., Pierce, M., Ivars, D. M. (2008) Quantifying the size effect of rock mass strength, Proceedings of the First South Hemisphere International Rock Mechanics Symposium, Australia, 3-15. https://doi.org/10.36487/ACG_repo/808_31
Deere, D. U., & Miller, R. (1966) “Engineering classification and index properties for intact rock,” National Technical Information Service Springfield, VA, USA.
Dershowitz, W. S. (1985) “Rock joint system, Doctoral dissertation, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
Dershowitz, W. S., and Herda, H. H. (1992) “Interpretation of fracture spacing and intensity,” Proc 32nd US Rock Mech Symp, Santa Fe, NM, 757-766.
Dhiman, R.K., Thakur, M. (2022) “Graphical charts for onsite Continuous Slope Mass Rating (CoSMR) classification using strike parallelism and joint dip or plunge of intersection” Engineering Geology, Vol. 298.
https://doi.org/10.1016/j.enggeo.2022.106559
Einstein, H. H., & Baecher, G. B. (1983). Probabilistic and statistical methods in engineering geology - Specific method and examples - Part I: Exploration. Rock Mechanics and Rock Engineering, Vol.16, pp.39-72.
https://link.springer.com/article/10.1007/BF01030217
Esmaieli, K., Hadjigeorgiou, J., and Grenon, M. (2010) “Estimating geometrical and mechanical rev based on synthetic rock mass models at Brunswick Mine,” International Journal of Rock Mechanics and Mining Sciences, Vol. 47, No. 6, pp. 915–926.
https://doi.org/10.1016/j.ijrmms.2010.05.010
Goodman, Richard E., ASCE, M., and Bray John W. (1976) “Toppling of Rock Slopes,” Proceeding of the Specialty Conference on Rock Engineering for Foundations and Slopes ASCE/Boulder, Colorado, August, pp.15-18.
Goodman, R.E. (1989) “Introduction to Rock Mechanics,” vol. 2, John Wiley & Sons, New York, pp. 8–305.
Guo, J., Wu, Z. W., and Liu, K. (2023). “Stability analysis of soft-hard-interbedded anti-inclined rock slope,” Scientific Reports, Vol.13(1).
https://doi:10.1038/s41598-023-28657-2
Hoek, E., Bray, J.W. (1981). “Rock Slope Engineering” The Institution of Mining and Metallurgy, London.
Hoek, E., and Brown, E. T. (1997). “Practical estimates of rock mass strength,” International Journal of Rock Mechanics and Mining Sciences, Vol. 34, No. 8, pp. 1165-1186.
https://doi.org/10.1016/S1365-1609(97)80069-X
Holt, R. M., Kjolaas, J., Larsen, I., Li, L., Pillitteri, A. G., Sonstebo, E. F. (2005). “Comparison between controlled laboratory experiments and discrete particle simulations of the mechanical behaviour of rock,” International Journal of Rock Mechanics and Mining Sciences, Vol.42, No. 7-8, pp. 985-995.
https://doi.org/10.1016/j.ijrmms.2005.05.006
Hudson, John A., Harrison john P. (1997) “Engineering rock mechanics-an introduction to the principles,” Elsevier Science Ltd, UK.
Hungr, O., Corominas, J., and Eberhardt, E. (2005) “Estimating landslide motion mechanism, travel distance and velocity,” Landslide Risk Management,Vancouver, B.C., pp. 109-138.
Itasca Consulting Group Inc. PFC3D (Particle Flow Code in 3 dimensions) (2019), Version 6.0, MN 55401.
Kafle, K. R. (2010) “Slope Mass Rating in Niddle Moutain of Nepal: a Case Study on Landslide at Rabi Vdc Opi Village, Kavre,” Kathmandu University Journal of Science Engineering and Technology, Vol.6, No.2, pp.28-38.
Lo, C.-M., & Feng, Z.-Y. (2014). “Deformation characteristics of slate slopes associated with morphology and creep,” Engineering Geology, Vol.178, pp.132-154.
https://doi.org/10.1016/j.enggeo.2014.06.011
Lu, Y. C., Tien, Y. M., & Juang, C. H. (2017). “Uncertainty of 1D fracture intensity measurements,” Journal of Geophysical Research-Solid Earth. Vol. 122, No. 11, pp.9344-9358. https://doi.org/10.1002/2016JB013620
Mas Ivars, D., Pierce, M., Gagne, D. and Darcel, C. (2008) “Anisotropy and scale dependency in jointed rock mass strength-a synthetic rock mass study,” Proceedings of the First International FLAC/DEM Symposium on Numerical Modeling, pp. 231-239.
Mass Ivars, D. M., Pierce, M. E., Darcel, C., Reyes-Montes, J., Potyondy, D. O., Young, R. P., & Cundall, P. A. (2011) “The synthetic rock mass approach for jointed rock mass modelling,” International Journal of Rock Mechanics and Mining Sciences, Vol. 48, No. 2, pp. 219-244. https://doi.org/10.1016/j.ijrmms.2010.11.014
Mas Ivars, D. (2010) “Bonded particle model for jointed rock mass,” KTH.
Pastor, J. L., Riquelme, A. J., Tomás, R., & Cano, M. (2019) “Clarification of the slope mass rating parameters assisted by SMRTool, an open-source software,” Bulletin of Engineering Geology and the Environment, pp.1-12.
Pierce, M., Ivars, D.M., and Sainsbury, B. (2009). “Use of Synthetic Rock Masses (SRM) to Investigate Jointed Rock Mass Strength and Deformation Behavior,” In: Anonymous proceedings of the international conference on rock joints and jointed rock masses, Tucson, Arizona, USA.
Potyondy, D. O., & Cundall, P. A. (2004) “A bonded-particle model for rock,” International Journal of Rock Mechanics and Mining Sciences, Vol.41, No.8, pp.1329-1364.
https://doi.org/10.1016/j.ijrmms.2004.09.011
Pritchard, M. A. and Savigny, K. W. (1990) “Numerical modelling of toppling,” Can. Geotech. J., Vol. 27, pp.823–34. https://doi.org/10.1139/t90-095
Pritchard, M. A. and Savigny, K. W. (1991) “The Heather Hill landslide: an example of a large scale toppling failure in a natural slope,” Can. Geotech. J., pp. 28, 410–22.
Richards, L., Leg, G., and Whittle, R. (1978) “Appraisal of stability conditions in rock slopes,” Foundation engineering in difficult ground. Newnes-Butterworths, London, pp. 449-512.
Riquelme, A. J., Tomás, R., & Abellán, A. (2016) “Characterization of rock slopes through slope mass rating using 3D point clouds,” International Journal of Rock Mechanics and Mining Sciences, Vol. 84, pp.165-176. https://doi.org/10.1016/j.ijrmms.2015.12.008
Romana M. (1985) “New adjustment ratings for application of Bieniawski classification to slopes,” Proceedings of the International Symposium on the Role of Rock Mechanics in Excavations for Mining and Civil Works, Zacatecas, pp. 49-53.
Romana M. (1993) “A geomechanical classification for slopes: Slope Mass Rating,” Comprehensive Rock Engineering, JA Hudson, ed. Oxford: Pergamon Press.
https://doi.org/10.1016/B978-0-08-042066-0.50029-X
Romana, M., Tomás, R., Serón, J.B. (2015), “Slope Mass Rating (SMR) geomechanics classification: thirty years review”, ISRM Congress 2015 Proceedings - International Symposium on Rock Mechanics, Quebec, Canada, May 10 to 13.
Salvini, R., Francioni, M., Riccucci, S., Bonciani, F., & Callegari, I. (2013) “Photogrammetry and laser scanning for analyzing slope stability and rock fall runout along the Domodossola–Iselle railway, the Italian Alps,” Geomorphology, Vol. 185, pp.110-122.
https://doi.org/10.1016/j.geomorph.2012.12.020
Shou, K. J., Wang, C. F. (2003) “Analysis of the Chiufengershan landslide triggered by the 1999 Chi-Chi earthquake in Taiwan,” Engineering Geolory, vol.68, pp.237-500.
https://doi.org/10.1016/s0013-7952(02)00230-2
Siddique, T., Alam, M.M., Mondal, M.E.A. (2015) “Slope mass rating and kinematic analysis of slopes along the national highway-58 near Jonk, Rishikesh, India,” Vol. 7, No. 5, pp. 600-606. https://doi.org/10.1016/j.jrmge.2015.06.007
Singh, B., and Goel, R. K. (2012) “Engineering Rock Mass Classifications, ” Waltham MA: Butterworth-Heinemann, Elsevier.
https://doi.org/10.1016/C2010-0-64994-7
Tao, Z., Zhu, C., He, M. and Karakus, M. (2021) “A physical modeling-based study on the control mechanisms of Negative Poisson′s ratio anchor cable on the stratified toppling deformation of anti-inclined slopes,”. International Journal of Rock Mechanics and Mining Sciences, Vol.138, 104632.
https://doi.org/10.1016/j.ijrmms.2021.104632
Tang, C. L., Hu, J. C., Lin, M. L., Angelier, J., Lu, C. Y., Chan, Y. C., and Chu, H. T. (2009). “The Tsaoling landslide triggered by the Chi-Chi earthquake, Taiwan: Insights from a discrete element simulation,” Engineering Geology, Vol.106, No. 1, pp. 1-19.
https://doi.org/10.1016/j.enggeo.2009.02.011
Tomás, R., Delgado, J., Seracute{o}n, J.B. (2007) “Modification of slope mass rating (SMR) by continuous functions” International Journal Of Rock Mechanics andMining Sciences, Vol.44, No.7, pp.1062-1069.
https://doi.org/10.1016/j.ijrmms.2007.02.004
Wang, W. N., Chigira M., Furuya, T. (2003) “Geological and geomorphological precursors of the Chiu-fen-erh-shan landslide triggered by the Chi-chi earthquake in central Taiwan,” Engineering Geology, vol.69, No.1-2, pp.1-13.
https://doi.org/10.1016/s0013-7952(02)00244-2
Weng, M. C., Chen, T. C. ans Tsai, S. J. (2017) “Modeling Scale Effects on Consequent Slope Deformation by Model Tests and the Discrete Element Method,” Landslides, Vol.14, pp. 987-993.
https://doi.org/10.1007/s10346-016-0774-7
Weng, M.-C., Chang, C.-Y., Jeng, F.-S., and Li, H.-H. (2020) “Evaluating the stability of anti-dip slate slope using an innovative failure criterion for foliation,” Engineering Geology, Vol. 275, No. 20, pp. 105737.
https://doi.org/10.1016/j.enggeo.2020.105737
Wyllie, Duncan C., Mah, Christopher W. (2004)., “Rock Slope Engineering” Taylor & Francis e-Library, London.
Yan, S., Du, H., Chen, Y., Wang, X. (2018) “Dynamic Stability Safety Evaluation of Consequent Rock Slopes,” 2017 3rd International Forum on Energy, Environment Science and Materials, pp. 1519-1528.
http://doi.org/10.2991/ifeesm-17.2018.277
Yeh, P.-T., Chen, I.-H., Lee, K.Z.-Z., Chang, K.-T. (2022) “Graphical comparison of numerical analysis, slope mass rating, and kinematic analysis for the effects of weak plane orientations on rock slope stability,” Engineering Geology, vol. 311, pp. 17.
https://doi.org/10.1016/j.enggeo.2022.106900
指導教授 田永銘 盧育辰(Yong-Ming Tien Yu-Chen Lu) 審核日期 2024-1-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明