參考文獻 |
1. 董家鈞,2013,「知之為知之,不知為不知,是知也:淺談地質模型不確定性」,大地技師期刊刊,第20期,第72–83頁。
2. Andrus, R.D., Stokoe, K.H., II., 1997. Liquefaction resistance based on shear wave velocity. In: Proceedings, NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, 89–128, Report No. NCEER-97-0022. National Center for Earthquake Engineering Research, Buffalo.
3. Andrus, R.D., Stokoe, K.H., II., 2000. Liquefaction resistance of soil from shear wave velocity. J. Geotech. Geoenviron. Eng. ASCE 126 (11), 1015–1025.
4. Boulanger, R., Idriss, I., 2007. Evaluation of cyclic softening in silts and clays. J. Geotech. Geoenviron. Eng. 133 (6), 641–652.
5. Burland, J.B., 1987. Nash lecture: the teaching of soil mechanics—a personal view. Groundwater Effects in Geotechnical Engineering, Vol 3. Proceedings of 9th European Conference on Soil Mechanics and Foundation Engineering, Balkema, Rotterdam/Boston, pp. 1427-1441.
6. Cetin, K.O., Seed, R.B., Der Kiureghian, A., Tokimatsu, K., Harder Jr, L.F., Kayen, R.E., Moss, R.E., 2004. Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential. J. Geotech. Geoenviron. Eng. 130 (12), 1314–1340.
7. Davis, J.C., 2002. Statistics and Data Analysis in Geology, 3rd Edition. Wiley, New York.
8. Gong, W., Luo, Z., Juang, C.H., Huang, H., Zhang, J., Wang, L., 2014. Optimization of site exploration program for improved prediction of tunneling-induced ground settlement in clays. Comput. Geotech. 56, 69–79.
9. Gong, W., Juang, C.H., Martin II, J.R., Tang, H., Wang, Q., Huang, H., 2018. Probabilistic analysis of tunnel longitudinal performance based upon conditional random field simulation of soil properties. Tunn. Undergr. Space Technol. 73, 1–14.
10. Gong, W., Tang, H., Wang, H., Wang, X., Juang, C.H., 2019. Probabilistic analysis and design of stabilizing piles in slope considering stratigraphic uncertainty. Engineering Geology. 259, 105162.
11. Gong, W., Zhao, C., Juang, C.H., Tang, H., Wang, H., Hu, X., 2020. Stratigraphic uncertainty modeling with random field approach. Comput. Geotech. 125, 103681.
12. Gong, W., Zhao, C., Juang, C.H., Zhang, Y., Tang, H., Lu, Y.C., 2021. Coupled characterization of stratigraphic and geo-properties uncertainties – A conditional random field approach. Engineering Geology. 294 (5), 106348.
13. Hsu, Y.H., Lu, Y.C., Khoshnevisan, S., Juang, C.H., Hwang, J.H., 2022. Effect of geological uncertainties on the design of offshore wind turbine foundations. Engineering Geology. (Under review)
14. Idriss, I., Boulanger, R., 2010. SPT-Based Liquefaction Triggering Procedures, Report No. UCD/CGM-10/02. Department of Civil and Environmental Engineering, University of California, Davis, CA, p. 259.
15. Iwasaki, T., Arakawa, T., Tokida, K., 1984. Simplified Procedures for Assessing Soil Liquefaction During Earthquakes. Soil Dyn. Earthq. Eng. 3 (1), 49–58.
16. Juang, C.H., Ge, Y., Zhang, J., 2019a. Geological Uncertainty: A Missing Element in Geotechnical Reliability Analysis. The Sixth Wilson Tang Lecture, In: Proceedings of the 7th International Symposium on Geotechnical Safety and Risk, pp. 1–12.
17. Juang, C.H., Zhang, J., Shen, M.F., Hu, J.Z., 2019b. Probabilistic methods for unified treatment of geotechnical and geological uncertainties in geotechnical analysis. Eng. Geol. 249, 148–161.
18. Keaton, J.R., 2013. Engineering geology: Fundamental input or random variable?. In: Proc. Geo-Congress March 3–7 2013. San Diego, California, USA, pp. 232–253.
19. Keaton, J.R., 2015. A Suggested Geologic Model Complexity Rating System. In: Engineering Geology for Society and Territory-Vol. 6, Springer, Cham.
20. Li, S. Z., 2009. Markov random field modeling in image analysis. Springer, London.
21. Li, Z., Wang, X., Wang, H., Liang, R.Y., 2016. Quantifying stratigraphic uncertainties by stochastic simulation techniques based on Markov random field. Eng. Geol. 201, 106–122.
22. Liu, M., Breuel, T., Kautz, J., 2017. Unsupervised Image-to-Image Translation Networks, 31. Conference on Neural Information Processing Systems.
23. Lu, Y.C., Liu, L.W., Khoshnevisan, S., Ku, C.S., Juang, C.H., and Xiao, S., 2022. A new approach to constructing SPT-CPT correlation for sandy soils. Georisk-Assessment and Management of Risk for Engineered Systems and Geohazards. (under review)
24. Mann, C.J., 1993. Uncertainty in Geology, In J.C. Davis and U.C. Herzfeld, (eds), Computers in Geology-25 Years of Progress, Oxford University Press, New York, 241-254.
25. Ministry of Transportation and Communication R.O.C. 2018. Taiwan Highway Bridge Seismic Design Code. Ministry of Transportation and Communication R.O.C.
26. National Academy of Sciences, Engineering, and Medicine (NASEM), 2016. Earthquake-Induced Soil Liquefaction and Its Consequences. The National Academy Press, Washington, DC.
27. Robertson, P.K., 1990. Soil classification using the cone penetration test. Can. Geotech. J. 27(1), 151–158.
28. Robertson, P.K., Wride, C.E., 1998. Evaluating cyclic liquefaction potential using the cone penetration test. Can. Geotech. J. 35 (3), 442–459.
29. Robertson, P.K., 2009. Performance-based earthquake design using the CPT. In: Proceedings of the international conference on performance-based design in earthquake geotechnical engineering, pp. 15–18.
30. Sandersen, P.B.E., 2008. Uncertainty assessment of geological models--A qualitative approach, IAHS Publications-Series of Proceedings and Reports, No. 320, 345-349.
31. Shannon, C.E., 1948. A Mathematical Theory of Communication. The Bell System Technical Journal, 27, 379–423, 623–656.
32. Shen, M., Juang, C.H., Ku, C.S., Khoshnevisan, S., 2019. Assessing effect of dynamic compaction on liquefaction potential using statistical methods – a case study. Georisk: Assess. Manag. Risk Eng. Syst. Geohazards 13 (4), 341–348.
33. Seed, H.B., Idriss, I.M., 1971. Simplified procedure for evaluation soil liquefaction potential. J. Soil Mech. Found. Div. ASCE Vol. 107 (SM9), 1249–1274.
34. Seed, H.B., Idriss, I.M., 1982. Ground Motions and Soil Liquefaction During Earthquakes. Earthquake Engineering Research Institute Monograph.
35. Wang, C., Chen, Q., Juang, C.H., 2017. Regional Liquefaction Mapping Accounting for Multiscale Spatial Variability of Soil Parameters with Geological Constraints. Geo-Risk 2017: Reliability-Based Design and Code Developments. Denver, Colorado, USA.
36. Wellmann, J.F., Horowitz, F.G., Schill, E., Regenauer-Lieb, K., 2010. Towards incorporating uncertainty of structural data in 3D geological inversion. Tectonophysics 490 (3–4), 141–151.
37. Wellmann, J.F., Regenauer-Lieb, K., 2012. Uncertainties have a meaning: information entropy as a quality measure for 3-D geological models. Tectonophysics 526–529, 207–216.
38. Youd, T.L., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Christian, J.T., Dorby, R., Finn, W.D.L., Harder Jr., L.F., Hynes, M.E., Ishihara, K., Koester, J.P., Liao, S.C., Marcuson III, W.F., Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R.B., Stokoe II, K.H., 2001. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. J. Geotech. Geoenviron. 127 (10), 817–833.
39. Youd, T.L., Noble, S.K., 1997. Liquefaction criteria based statistical and probabilistic analysis. In: Proceedings, NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, 201–216, Report No. NCEER-97-0022. State University of New York, Buffalo, NY.
40. Zhang, Y., Ma, W., Amin, M. G., 2001. Subspace analysis of spatial time-frequency distribution matrices. IEEE Trans. Signal Process. 49 (4), 747–759.
41. Zhao, C., Gong, W., Li, T., Juang, C.H., Tang, H., Wang, H., 2021. Probabilistic characterization of subsurface stratigraphic configuration with modified random field approach. Eng. Geol. 288, 106138. |