參考文獻 |
一、中文部分
台灣電力公司:https://www.taipower.com.tw/tc/index.aspx
英國廢棄物回收及處理公司(ELLGIA):https://www.ellgia.co.uk/
內政部建築研究所,「鹼活化爐石混凝土應用於營建材料之研究」,(2010)。
王和源、陳柏存、郭致維,「液固比對鹼激發高流動性混凝土耐久性之影響」,防蝕工程,第34卷第1期,pp.24-30,(2020)。
行政院環境保護署,「固體再生燃料製造技術指引與品質規範」,(2020)。
行政院環境保護署,「焚化底渣再生粒料應用於控制性低強度回填材料」,(2015)。
吳佩芬、葛家賢,「固態廢棄物衍生燃料技術簡介」,工安環保報導,第8期,2002。
吳明富,「還原碴-高爐石作為混合膠結材之應用」,碩士論文,國立中央大學,中壢(2013)。
吳明富、林怡忻、張文賓、呂東璇、黃偉慶,「以鹼活化技術穩定化電弧爐還原碴作為混凝土材料之研究」,中華道路,第55卷第2期, pp.35-42,(2016)。
林宸毅,「鍋爐衍生灰渣特性分析及再利用於混凝土製品之實驗評估」,碩士論文,國立中央大學,桃園(2020)。
徐佩璇,「混燒飛灰特性研究及再利用之可行性評估」,碩士論文,國立中央大學,桃園(2021)。
張文賓,「藥劑配比對不同水膠比鹼活化爐碴 膠結材料性質之影響」,碩士論文,國立中央大學,桃園(2016)。
張慶源、張家驥,「機械生物處理」,臺灣生質能技術應用暨污染防治聯盟(2018)。
陳映竹、陳宜蓁,「從固態廢棄物衍生燃料至固體回收燃料之演進」,學術分享專欄,國立臺北科技大學,臺北(2020)。
黃兆龍,「卜作嵐混凝土使用手冊」,(2007)。
新竹縣政府環境保護局,「新竹縣多元垃圾處理計畫可行性評估與先期規劃作業計畫-可行性評估報告」,(2019)。
楊士鋒,「流體化床鍋爐燃煤飛灰與混燒飛灰卜作嵐特性比較之研究-以紡織汙泥為例」,碩士論文,國立中央大學(2019)。
萬皓鵬、李宏台,「廢棄物衍生燃料的使用」,科學發展,第450期, pp.34-43,(2010)。
鄭大偉,「無機聚合材料與鹼激發材料有何不同」,土木水利,第四十七卷第二期,(2020)。
蕭柏洋,「生質燃料灰渣之再利用與在處理方法探討」,碩士論文,國立中央大學,桃園(2018)。
蕭遠智,「鹼活化電弧爐還原碴漿體之水化反應特性」,碩士論文,國立中央大學,中壢(2002)。
羅國肇,「流體化床燃燒—由糖炒栗子談起」,科學發展,第450期,pp.6-11,(2010)。
二、英文部分
Aubert, J.E., Husson, B., and Vaquier, A., (2004), “Metallic aluminum in MSWI fly ash: quantification and influence on the properties of cement-based products.” Waste Manage, Vol. 24, pp. 589-596.
Alnahhal, M. F., Kim, T., Zhongzi, X., and Hajimohammadi, A., (2021), “Distinctive rheological and temporal viscoelastic behaviour of alkali-activated fly ash/slag pastes: A comparative study with cement paste.” Cement and Concrete Research, Vol. 144, 106441.
Bakharev, T., Kim, T., Sanjayan, J. G., and Cheng,T. B., (1999), “Alkali activation of Australian slag cements.” Cement and Concrete Research, Vol. 29, pp.113-120.
Bunge, R., (2016), “Recovery of metals from waste incinerator bottom ash. ” Germany.
Collepardi, M., Collepardi, S., Ongaro, D., Curzio, A. Q., Sammartino, M., (2010), “Concrete with bottom ash from municipal solid wastes incinerators. ” International Conference on Sustainable Construction Materials and Technologies, pp. 289–298.
Coker, E. N., (2013), “The oxidation of aluminum at high temperature studied by Thermogravimetric Analysis and Differential Scanning Calorimetry.” Office of Scientific & Technical Information Technical Reports,
Dontriros, S., Likitlersuang, S.,and Janjaroen, D., (2020), “Mechanisms of chloride and sulfate removal from municipal-solid waste-incineration fly ash (MSWI FA): Effect of acid-base solutions.” Waste Management, Vol. 101, pp.44-53.
Gai, W. Z., Liu, W. H., Deng,Z. Y., and Zhou, J. G., (2013), “Reaction of Al powder with water for hydrogen generation under ambient condition.” International journal of hydrogen energy, Vol. 37, pp.13132-13140.
Gökelma, M., Olivares, A. V., Tranell, G., (2021), “Characteristic properties and recyclability of the aluminium fraction of MSWI bottom ash.” Waste Management, Vol. 130, pp.65-73.
Huanhai, Z., Xuequan, W., Zhongzi, X., and Mingshu, T., (1993), “Kinetic study on hydration of alkali-activated slag.” Cement and Concrete Research, Vol. 23, pp.1253-1258.
Hashim, A. N., Hussin,K., Begumm, N., Abdullah, M. M. A. B., Razak, K. A., and Ekaputri, J. J., (2015), “Effect of sodium hydroxide (NaOH) concentration on compressive strength of alkali-activated slag (AAS) mortars.” Applied Mechanics and Materials, Vol.754-755, pp.300-304.
Huang, G., Yang K., Chen, L., Lu, Z., Sun, Y., Zhang, X., Feng, Y., Ji, Y., and Xu, Z., (2020), “Use of pretreatment to prevent expansion and foaming in high performance MSWI bottom ash alkali-activated mortars.” Construction and Building Materials, Vol. 245, 118471.
Jeurgens, L. P. H., Sloof, W. G., Tichelaar, F. D., and Mittemeijer, E. J., (2002), “Structure and morphology of aluminium-oxide films formed by thermal oxidation of aluminium.” Thin Solid Films, Vol. 418, pp.86-101.
Joseph, A.M., Van den Heede, P., Snellings, R., Van, A., (2017), “Comparison of different beneficiation techniques to improve utilization potential of municipal solid waste incineration fly ash concrete. ” Construction Materials and Systems,Vol. 2, 49.
Kanehira, S., Kanamor, S., Nagashima, K., Saeki, T., Visbal, H., Fukui ,T., and Hirao, K., (2013), “Controllable hydrogen release via aluminum powder corrosion in calcium hydroxide solutions.” Journal of Asian Ceramic Societies, Vol. 1, pp.296-303.
Kuo, W. T., and Gao, Z. C., (2018), “Engineering Properties of Controlled Low-Strength Materials Containing Bottom Ash of Municipal Solid Waste Incinerator and Water Filter Silt.” Applied Sciences, Vol. 8, 1377.
Kou, L., Tang, J., Hu, T., Zhou, B., and Yang, L., (2021). “Effect of CaO on catalytic combustion of semi-coke.” Green Processing and Synthesis, Vol. 10, pp.11-20.
Lynn, C.J., Dhir, R.K., Ghataora, G.S., (2017). “Municipal incinerated bottom ash use as a cement component in concrete.” Journal of Cleaner Production, Vol. 286, 125707.
Mong, N. T., Anh, N. H., Ty, T. V., Khai, L. T. Q., Xuan, N. V., and Giang, N. N. L., (2020), “Engineering properties of practical alkali-activated material with slag and low calcium fly ash blending.” Xaydung, pp. 157-160
Naraparaju, R., Mechnich, P., Schulz, U., and Rodriguez, G. C. M., (2014), “The Accelerating Effect of CaSO4 within CMAS (CaO–MgO–Al2O3–SiO2) and its Effect on the Infiltration Behavior in EB-PVD 7YSZ.” Journal of the American Ceramic Society, Vol. 73, pp.1-6.
Nithiya, A.,Saffarzadeh, A., and Shimaoka, T., (2017), “Hydrogen gas generation from metal aluminum-water interaction in municipal solid waste incineration (MSWI) bottom ash.” Waste Management, Vol. 73, pp.342-350.
Nedunuri, A. S. S. S., and Muhammad, S., (2021), “Fundamental understanding of the setting behaviour of the alkali activated binders based on ground granulated blast furnace slag and fly ash.” Construction and Building Materials, Vol. 291, 123243.
Pera, J., Coutaz, L., Ambroise, J., and Chababbet, M., (1997), “Use of incinerator bottom ash in concrete. ” Cement and Concrete Research , Vol. 27, No 1, pp. 1-5
Porciúncula, C. B., Marcilio, N. R., Tessaro, I. C., and Gerchmann, M., (2012), “Production of hydrogen in the reaction between aluminum and water in the presence of NaOH and KOH.” Brazilian Journal of Chemical Engineering, Vol. 29, pp.337-348.
Rübner, K., Haamkens, F., and Linde, O., (2008), “Use of municipal solid waste incinerator bottom ash as aggregate in concrete.” Quarterly Journal of Engineering Geology and Hydrogeology, Vol.41, pp.459-464.
Saikia, N., Cornelis, G., Mertens, G., b, Elsen, J., Balen, K. V., Gerven, T. V., and Vandecasteele, C., (2008), “Assessment of Pb-slag, MSWI bottom ash and boiler and fly ash for using as a fine aggregate in cement mortar.” Journal of Hazardous Materials, Vol. 154, pp.766-777.
Saikia, N., Mertens, G., Balen, K. V., Elsen, J., Gerven, T. V., and Vandecasteele, C., (2015), “Pre-treatment of municipal solid waste incineration (MSWI) bottom ash for utilisation in cement mortar.” Construction and Building Materials, Vol. 96, pp.76-85.
Trunov, M.A., Schoenitz, M. and Dreizin, E.L., (2006), “Effect of polymorphic phase transformations in alumina layer on ignition of aluminium particles. ” Combustion Theory and Modelling, Vol. , pp.603-623
Tian, X., Rao, F., Leon-Patino, C. A., and Song, S., (2020), “Effects of aluminum on the expansion and microstructure of alkali-activated MSWI fly ash-based pastes.” Chemosphere, Vol. 240, 124986.
Wang, X., Wang, L., Wang, Y., Tan, R., Ke, X., Zhou, X., Geng, J., Hou, H., and Zhou, M., (2017), “Calcium Sulfate Hemihydrate Whiskers Obtained from Flue Gas Desulfurization Gypsum and Used for the Adsorption Removal of Lead.” Crystals,Vol. 7, 270.
Xuan, D., and Poon, C.S., (2018), “Removal of metallic Al and Al/Zn alloys in MSWI bottom ash by alkaline treatment.” Journal of Hazardous Materials, Vol.344, pp.73-80.
Yamaguchi, N., Masuda, Y., Yamada, Y., Narusawa, H., Han-Cheol, C., Tamaki, Y., and Miyazaki, T., (2015), “Synthesis of CaO–SiO2 compounds using materials extracted from industrial wastes.” Open Journal of Inorganic Non-Metallic Materials, Vol. 5, pp.1-10.
Zhen, G., Zhou, H., Zhao, T., Zhao, Y., (2012), “Performance Appraisal of Controlled Low-strength Material Using Sewage Sludge and Refuse Incineration Bottom Ash.” Chinese Journal of Chemical Engineering, Vol. 20, pp.80-88.
Zhen, G., Lu, X., Zhao, Y., Niu, J., Chai, X., Su, L., Li, Y. Y., Liu, Y., Du, J., Hojo, T., and Hu, Y., (2013), “Characterization of controlled low-strength material obtained from dewatered sludge and refuse incineration bottom ash: mechanical and microstructural perspectives. ” Journal of Environmental Management, Vol. 129, pp.183-189. |