博碩士論文 109322049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:18.189.185.62
姓名 翁永詮(Wong Yung Chuan)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 固體再生燃料飛灰預處理為 工程材料之研究
(Study on Pre-treatment of Solid Recovered Fuel (SRF) Fly Ash as Engineering Materials)
相關論文
★ 電弧爐氧化碴特性及取代混凝土粗骨材之成效研究★ 路基土壤回彈模數試驗系統量測不確定度與永久變形行為探討
★ 工業廢棄物再利用於營建工程粒料策略之研究★ 以鹼活化技術資源化電弧爐煉鋼還原碴之研究
★ 低放處置場工程障壁之溶出失鈣及劣化敏感度分析★ 以知識本體技術與探勘方法探討台北都會區道路工程與管理系統之研究
★ 電弧爐煉鋼爐碴特性及取代混凝土粗骨材之研究★ 三維有限元素應用於柔性鋪面之非線性分析
★ 放射性廢料處置場緩衝材料之力學性質★ 放射性廢料深層處置場填封用薄漿之流變性與耐久性研究
★ 路基土壤受反覆載重作用之累積永久變形研究★ 還原碴取代部份水泥之研究
★ 路基土壤反覆載重下之回彈與塑性行為及模式建構★ 重載交通荷重對路面損壞分析模式之建立
★ 鹼活化電弧爐還原碴之水化反應特性★ 電弧爐氧化碴為混凝土骨材之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 造紙廠使用循環式流體化床鍋爐所產出之固體再生燃料(Solid Recovered Fuel, SRF)混燒飛灰可達成廢棄物資源再利用的目標,但部分SRF混燒飛灰在後端處理時存在以下問題:(1)再利用產品之品質不穩定,(2)部分水泥產品發生體積膨脹與開裂。因此,本研究針對與水泥拌和後具有膨脹趨勢之SRF混燒飛灰(J廠與C廠飛灰),並進行相關之預處理試驗,最終對其成效提出初步評估,提供再利用途徑之判斷依據。
由兩鍋爐廠取樣試驗結果發現,混燒飛灰與水泥拌和產生的體積膨脹發生在試體硬固之前,因燃料中不完全燃燒之的金屬鋁所致,會在水泥新拌階段產生大量氫氣並使試體膨脹及開裂。使用氣體容積法建立產氣轉換式以推估兩廠混燒飛灰中的金屬鋁含量,並採用未處理及預處理等方式進行再利用的合適性評估。未處理部分進行CLSM試驗,預處理部分則包括水浸泡處理、熱處理、鹼浸泡處理、鹼激發處理,其中,鹼激發處理使用水淬爐石粉作為膠結材,而其餘處理的膠結材則是卜特蘭水泥。
試驗結果顯示,具膨脹性的混燒飛灰在未處理之情況下製作成CLSM是無效的;水浸泡處理的效果亦有限,因試體膨脹的現象無法被完全去除;熱處理的結果表示,950℃的處理溫度效果優於750℃,除了能解決體積膨脹問題,也可提高飛灰試體之抗壓強度;鹼浸泡處理可解決膨脹問題,但混燒飛灰試體之抗壓強度明顯下降;鹼激發處理使試體不再膨脹,然而對高鋁含量飛灰的處理效果不佳,抗壓強度改善有限,甚至在低藥劑濃度時引發嚴重的緩凝問題。另廠低鋁含量混燒飛灰的鹼激發處理效果顯著,不同鹼藥劑用量下之抗壓強度大幅提升,在混燒飛灰使用量高達50 %情況下,試體抗壓強度可達到卜特蘭水泥的強度標準。
摘要(英) Solid Recovered Fuel (SRF) co-firing fly ash which is produced by paper mills by using Circulating Fluidized Bed (CFB) have achieved the goal of waste recycling. However, some of SRF co-firing fly ash encounter the problems while back-end processing: (1) The instability of recycled products quality, (2) some cement products occurs expansion and cracking reactions. Therefore, this study aimed at the SRF co-firing fly ash (SRF-J and SRF-C) which have expansion tendency while mixing with cement, and carried out relevant pretreatment tests to provided a preliminary evaluation, offering the basis of judgement on the way of co-firing fly ash reuse.
In the initial results of study found that the expansion only occurred before hardened when co-firing fly ash maxing with cement, this phenomenon caused by the incomplete combustion of metallic aluminum in the CFB, a large amount of hydrogen will be generate when metal aluminum mixing with cement, and leads to expansion and cracks on specimen.
In addition, the gas release test was used establish a gas emission conversion function to estimate the metallic aluminum content in both of co-firing fly ash, and adopt un-treatment and pre-treatment to evaluate the potential of co-firing fly ash reuse. Un-treatment part select Controlled Low Strength Material (CLSM) test , and the pre-treatment part included water treatment, heat treatment, alkali solution treatment, and alkali-
iv
activated treatment. Among them, the alkali-activated treatment use slag blender material, and the other treatment use cement.
The test results show that it is invalid to make a sample as CLSM without treatment; the effect of water treatment is limited, cause the phenomenon of the specimen expansion cannot be completely removed; In heat treatment test found that treatment temperature 950℃℃is better than 750℃℃, 950℃℃can remove metallic aluminum in both of fly ash sample, and increase compressive strength of cement mortar; alkali treatment solves the expansion problem, but significantly lower both of fly ash sample’s compressive strength; Alkali-activated treatment also improve expansion problem, however, it do not improve the performance in high metallic aluminum content of fly ash, limited improvement in compressive strength of mortar, and even cause serious slow-setting in low concentration of alkali condition. The performance in low metallic aluminum content of fly ash can be improve significantly with alkali-activated treatment, the compressive strength under different alkali concentration, the strength can still be maintained at an acceptable level (higher than 40 MPa)When the fly ash content is as high as 50%.
關鍵字(中) ★ 固體再生燃料飛灰
★ 混燒飛灰
★ 金屬鋁
★ 膨脹
★ 預處理
關鍵字(英) ★ Solid Recovered Fuel fly ash
★ Co-Firing Fly Ash
★ Metallic Aluminum
★ Expansion
★ Pre-treatment
論文目次 摘要 i
Abstract iii
目錄 v
圖目錄 ix
表目錄 xvii
第 1 章 緒論 1
1.1 研究背景及動機 1
1.2 研究目的 1
1.3 研究範圍 1
1.4 研究方法及內容 2
1.5 名詞定義 3
第 2 章 文獻回顧 4
2.1 廢棄物衍生燃料與固體再生燃料 4
2.1.1 第五類廢棄物衍生燃料(RDF-5) 4
2.1.2 固體再生燃料(SRF) 5
2.1.3 第五類廢棄物衍生燃料與固體再生燃料之差異 7
2.2 循環式流體化床鍋爐 10
2.2.1 循環式流體化床鍋爐燃燒情形 10
2.2.2 循環式流體化床鍋爐脫硫與脫硝技術 11
2.3 可反應性金屬鋁的影響 14
2.3.1 金屬鋁的來源與危害 14
2.3.2 金屬鋁顆粒被氧化層包裹 18
2.3.3 可反應之金屬鋁含量推估 21
2.4 控制性低強度材料(CLSM) 24
2.4.1 CLSM之工程性質 24
2.4.2 CLSM的應用 25
2.5 水浸泡處理 27
2.5.1 水浸泡處理機理說明 27
2.5.2 水浸泡處理的應用 27
2.6 熱處理 29
2.6.1 熱處理機理說明 29
2.6.2 熱處理的應用 32
2.7 鹼浸泡處理 36
2.7.1 鹼浸泡處理機理說明 36
2.7.2 鹼浸泡處理的應用 38
2.8 鹼激發處理 40
2.8.1 鹼激發處理機理說明 40
2.8.2 鹼激發處理的應用 44
第 3 章 實驗材料與方法 48
3.1 研究材料 48
3.1.1 研究材料來源及外觀 48
3.1.2 其他相關材料 49
3.2 研究流程 54
3.3 實驗設備及方法 59
3.3.1 實驗設備 59
3.3.2 實驗方法 67
第 4 章 研究結果與分析 84
4.1 材料基本性質分析 84
4.1.1 物理及化學特性 84
4.1.2 水泥砂漿試驗 93
4.2 SRF飛灰中的膨脹物質探討 97
4.2.1 金屬鋁造成體積膨脹 97
4.2.2 金屬鋁的殘留原因 98
4.2.3 推估可反應性金屬鋁之含量 99
4.3 未處理之SRF飛灰應用於CLSM 104
4.3.1 CLSM新拌與硬固性質試驗 104
4.3.2 CLSM試驗小結 108
4.4 水浸泡處理 109
4.4.1 水浸泡處理後試體膨脹量 110
4.4.2 水浸泡處理後強度活性指數 111
4.4.3 水浸泡處理後氣體容積試驗 113
4.4.4 水浸泡處理後XRD分析 114
4.4.5 水浸泡處理小結 117
4.5 熱處理 118
4.5.1 熱處理後試體膨脹量 119
4.5.2 熱處理後強度活性指數 120
4.5.3 熱處理後氣體容積試驗 121
4.5.4 熱處理後XRD分析 124
4.5.5 熱處理小結 126
4.6 鹼浸泡處理 127
4.6.1 鹼浸泡處理後試體膨脹量 128
4.6.2 鹼浸泡處理後強度活性指數 128
4.6.3 鹼浸泡處理後氣體容積試驗 129
4.6.4 鹼浸泡處理後XRD分析 130
4.6.5 鹼浸泡處理小結 133
4.7 鹼激發處理 134
4.7.1 鹼激發處理後強度活性指數 136
4.7.2 鹼激發處理後凝結時間 145
4.7.3 鹼激發處理小結 148
第 5 章 結論與建議 149
5.1 結論 149
5.2 建議 151
參考文獻 152
參考文獻 一、中文部分
台灣電力公司:https://www.taipower.com.tw/tc/index.aspx
英國廢棄物回收及處理公司(ELLGIA):https://www.ellgia.co.uk/
內政部建築研究所,「鹼活化爐石混凝土應用於營建材料之研究」,(2010)。
王和源、陳柏存、郭致維,「液固比對鹼激發高流動性混凝土耐久性之影響」,防蝕工程,第34卷第1期,pp.24-30,(2020)。
行政院環境保護署,「固體再生燃料製造技術指引與品質規範」,(2020)。
行政院環境保護署,「焚化底渣再生粒料應用於控制性低強度回填材料」,(2015)。
吳佩芬、葛家賢,「固態廢棄物衍生燃料技術簡介」,工安環保報導,第8期,2002。
吳明富,「還原碴-高爐石作為混合膠結材之應用」,碩士論文,國立中央大學,中壢(2013)。
吳明富、林怡忻、張文賓、呂東璇、黃偉慶,「以鹼活化技術穩定化電弧爐還原碴作為混凝土材料之研究」,中華道路,第55卷第2期, pp.35-42,(2016)。
林宸毅,「鍋爐衍生灰渣特性分析及再利用於混凝土製品之實驗評估」,碩士論文,國立中央大學,桃園(2020)。
徐佩璇,「混燒飛灰特性研究及再利用之可行性評估」,碩士論文,國立中央大學,桃園(2021)。
張文賓,「藥劑配比對不同水膠比鹼活化爐碴 膠結材料性質之影響」,碩士論文,國立中央大學,桃園(2016)。
張慶源、張家驥,「機械生物處理」,臺灣生質能技術應用暨污染防治聯盟(2018)。
陳映竹、陳宜蓁,「從固態廢棄物衍生燃料至固體回收燃料之演進」,學術分享專欄,國立臺北科技大學,臺北(2020)。
黃兆龍,「卜作嵐混凝土使用手冊」,(2007)。
新竹縣政府環境保護局,「新竹縣多元垃圾處理計畫可行性評估與先期規劃作業計畫-可行性評估報告」,(2019)。
楊士鋒,「流體化床鍋爐燃煤飛灰與混燒飛灰卜作嵐特性比較之研究-以紡織汙泥為例」,碩士論文,國立中央大學(2019)。
萬皓鵬、李宏台,「廢棄物衍生燃料的使用」,科學發展,第450期, pp.34-43,(2010)。
鄭大偉,「無機聚合材料與鹼激發材料有何不同」,土木水利,第四十七卷第二期,(2020)。
蕭柏洋,「生質燃料灰渣之再利用與在處理方法探討」,碩士論文,國立中央大學,桃園(2018)。
蕭遠智,「鹼活化電弧爐還原碴漿體之水化反應特性」,碩士論文,國立中央大學,中壢(2002)。
羅國肇,「流體化床燃燒—由糖炒栗子談起」,科學發展,第450期,pp.6-11,(2010)。
二、英文部分
Aubert, J.E., Husson, B., and Vaquier, A., (2004), “Metallic aluminum in MSWI fly ash: quantification and influence on the properties of cement-based products.” Waste Manage, Vol. 24, pp. 589-596.
Alnahhal, M. F., Kim, T., Zhongzi, X., and Hajimohammadi, A., (2021), “Distinctive rheological and temporal viscoelastic behaviour of alkali-activated fly ash/slag pastes: A comparative study with cement paste.” Cement and Concrete Research, Vol. 144, 106441.
Bakharev, T., Kim, T., Sanjayan, J. G., and Cheng,T. B., (1999), “Alkali activation of Australian slag cements.” Cement and Concrete Research, Vol. 29, pp.113-120.
Bunge, R., (2016), “Recovery of metals from waste incinerator bottom ash. ” Germany.
Collepardi, M., Collepardi, S., Ongaro, D., Curzio, A. Q., Sammartino, M., (2010), “Concrete with bottom ash from municipal solid wastes incinerators. ” International Conference on Sustainable Construction Materials and Technologies, pp. 289–298.
Coker, E. N., (2013), “The oxidation of aluminum at high temperature studied by Thermogravimetric Analysis and Differential Scanning Calorimetry.” Office of Scientific & Technical Information Technical Reports,
Dontriros, S., Likitlersuang, S.,and Janjaroen, D., (2020), “Mechanisms of chloride and sulfate removal from municipal-solid waste-incineration fly ash (MSWI FA): Effect of acid-base solutions.” Waste Management, Vol. 101, pp.44-53.
Gai, W. Z., Liu, W. H., Deng,Z. Y., and Zhou, J. G., (2013), “Reaction of Al powder with water for hydrogen generation under ambient condition.” International journal of hydrogen energy, Vol. 37, pp.13132-13140.
Gökelma, M., Olivares, A. V., Tranell, G., (2021), “Characteristic properties and recyclability of the aluminium fraction of MSWI bottom ash.” Waste Management, Vol. 130, pp.65-73.
Huanhai, Z., Xuequan, W., Zhongzi, X., and Mingshu, T., (1993), “Kinetic study on hydration of alkali-activated slag.” Cement and Concrete Research, Vol. 23, pp.1253-1258.
Hashim, A. N., Hussin,K., Begumm, N., Abdullah, M. M. A. B., Razak, K. A., and Ekaputri, J. J., (2015), “Effect of sodium hydroxide (NaOH) concentration on compressive strength of alkali-activated slag (AAS) mortars.” Applied Mechanics and Materials, Vol.754-755, pp.300-304.
Huang, G., Yang K., Chen, L., Lu, Z., Sun, Y., Zhang, X., Feng, Y., Ji, Y., and Xu, Z., (2020), “Use of pretreatment to prevent expansion and foaming in high performance MSWI bottom ash alkali-activated mortars.” Construction and Building Materials, Vol. 245, 118471.
Jeurgens, L. P. H., Sloof, W. G., Tichelaar, F. D., and Mittemeijer, E. J., (2002), “Structure and morphology of aluminium-oxide films formed by thermal oxidation of aluminium.” Thin Solid Films, Vol. 418, pp.86-101.
Joseph, A.M., Van den Heede, P., Snellings, R., Van, A., (2017), “Comparison of different beneficiation techniques to improve utilization potential of municipal solid waste incineration fly ash concrete. ” Construction Materials and Systems,Vol. 2, 49.
Kanehira, S., Kanamor, S., Nagashima, K., Saeki, T., Visbal, H., Fukui ,T., and Hirao, K., (2013), “Controllable hydrogen release via aluminum powder corrosion in calcium hydroxide solutions.” Journal of Asian Ceramic Societies, Vol. 1, pp.296-303.
Kuo, W. T., and Gao, Z. C., (2018), “Engineering Properties of Controlled Low-Strength Materials Containing Bottom Ash of Municipal Solid Waste Incinerator and Water Filter Silt.” Applied Sciences, Vol. 8, 1377.
Kou, L., Tang, J., Hu, T., Zhou, B., and Yang, L., (2021). “Effect of CaO on catalytic combustion of semi-coke.” Green Processing and Synthesis, Vol. 10, pp.11-20.
Lynn, C.J., Dhir, R.K., Ghataora, G.S., (2017). “Municipal incinerated bottom ash use as a cement component in concrete.” Journal of Cleaner Production, Vol. 286, 125707.
Mong, N. T., Anh, N. H., Ty, T. V., Khai, L. T. Q., Xuan, N. V., and Giang, N. N. L., (2020), “Engineering properties of practical alkali-activated material with slag and low calcium fly ash blending.” Xaydung, pp. 157-160
Naraparaju, R., Mechnich, P., Schulz, U., and Rodriguez, G. C. M., (2014), “The Accelerating Effect of CaSO4 within CMAS (CaO–MgO–Al2O3–SiO2) and its Effect on the Infiltration Behavior in EB-PVD 7YSZ.” Journal of the American Ceramic Society, Vol. 73, pp.1-6.
Nithiya, A.,Saffarzadeh, A., and Shimaoka, T., (2017), “Hydrogen gas generation from metal aluminum-water interaction in municipal solid waste incineration (MSWI) bottom ash.” Waste Management, Vol. 73, pp.342-350.
Nedunuri, A. S. S. S., and Muhammad, S., (2021), “Fundamental understanding of the setting behaviour of the alkali activated binders based on ground granulated blast furnace slag and fly ash.” Construction and Building Materials, Vol. 291, 123243.
Pera, J., Coutaz, L., Ambroise, J., and Chababbet, M., (1997), “Use of incinerator bottom ash in concrete. ” Cement and Concrete Research , Vol. 27, No 1, pp. 1-5
Porciúncula, C. B., Marcilio, N. R., Tessaro, I. C., and Gerchmann, M., (2012), “Production of hydrogen in the reaction between aluminum and water in the presence of NaOH and KOH.” Brazilian Journal of Chemical Engineering, Vol. 29, pp.337-348.
Rübner, K., Haamkens, F., and Linde, O., (2008), “Use of municipal solid waste incinerator bottom ash as aggregate in concrete.” Quarterly Journal of Engineering Geology and Hydrogeology, Vol.41, pp.459-464.
Saikia, N., Cornelis, G., Mertens, G., b, Elsen, J., Balen, K. V., Gerven, T. V., and Vandecasteele, C., (2008), “Assessment of Pb-slag, MSWI bottom ash and boiler and fly ash for using as a fine aggregate in cement mortar.” Journal of Hazardous Materials, Vol. 154, pp.766-777.
Saikia, N., Mertens, G., Balen, K. V., Elsen, J., Gerven, T. V., and Vandecasteele, C., (2015), “Pre-treatment of municipal solid waste incineration (MSWI) bottom ash for utilisation in cement mortar.” Construction and Building Materials, Vol. 96, pp.76-85.
Trunov, M.A., Schoenitz, M. and Dreizin, E.L., (2006), “Effect of polymorphic phase transformations in alumina layer on ignition of aluminium particles. ” Combustion Theory and Modelling, Vol. , pp.603-623
Tian, X., Rao, F., Leon-Patino, C. A., and Song, S., (2020), “Effects of aluminum on the expansion and microstructure of alkali-activated MSWI fly ash-based pastes.” Chemosphere, Vol. 240, 124986.
Wang, X., Wang, L., Wang, Y., Tan, R., Ke, X., Zhou, X., Geng, J., Hou, H., and Zhou, M., (2017), “Calcium Sulfate Hemihydrate Whiskers Obtained from Flue Gas Desulfurization Gypsum and Used for the Adsorption Removal of Lead.” Crystals,Vol. 7, 270.
Xuan, D., and Poon, C.S., (2018), “Removal of metallic Al and Al/Zn alloys in MSWI bottom ash by alkaline treatment.” Journal of Hazardous Materials, Vol.344, pp.73-80.
Yamaguchi, N., Masuda, Y., Yamada, Y., Narusawa, H., Han-Cheol, C., Tamaki, Y., and Miyazaki, T., (2015), “Synthesis of CaO–SiO2 compounds using materials extracted from industrial wastes.” Open Journal of Inorganic Non-Metallic Materials, Vol. 5, pp.1-10.
Zhen, G., Zhou, H., Zhao, T., Zhao, Y., (2012), “Performance Appraisal of Controlled Low-strength Material Using Sewage Sludge and Refuse Incineration Bottom Ash.” Chinese Journal of Chemical Engineering, Vol. 20, pp.80-88.
Zhen, G., Lu, X., Zhao, Y., Niu, J., Chai, X., Su, L., Li, Y. Y., Liu, Y., Du, J., Hojo, T., and Hu, Y., (2013), “Characterization of controlled low-strength material obtained from dewatered sludge and refuse incineration bottom ash: mechanical and microstructural perspectives. ” Journal of Environmental Management, Vol. 129, pp.183-189.
指導教授 黃偉慶(Huang Wei Hsing) 審核日期 2022-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明