博碩士論文 109322085 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.145.195.198
姓名 林昱廷(Yu-Ting Lin)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 建立台灣北部交通與氣象因子對於空氣污染影響之機器學習模型
(The effect of meteorological and traffic factors on the air pollutants in North Taiwan)
相關論文
★ 結合資料探勘方法建立屏東平原含水層水文地質參數推估模式★ 探討颱風特性於農損及坡地災害遙測影像辨識之研究
★ 不同時空降雨型態對於地下水補注量之探討—以屏東平原為例★ 以訊號分析資料探勘方法探討PM2.5污染傳播時空特徵及相應之天氣條件
★ 運用訊號分析方法於地下水資源旱災韌性與風險評估★ 探討都市熱島效應對臺北地區午後雷雨及地下水之影響
★ 水文地質條件不確定性下的地下水時空變化模擬★ 以深度學習方法建立地下水位預警之風險評估模型
★ 以機器學習預測海溫及熱帶氣旋特徵對於珊瑚白化之影響 – 以澎湖南方四島為例★ 探討臺灣地震活動特徵與環境變數相關性分析
★ 以機器學習方法建立巨觀尺度降雨氣候水資源推估模式
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 研究早已表明空氣污染對於人體健康有著嚴重的影響,然而由於空氣污染物存在高度非線性與非穩態的特徵,而且影響空氣污染物的各種因素與化學反應非常複雜,現今仍沒有一套完整的空氣品質分析流程與空氣品質預測模式。因此,本研究以資料探勘的角度,從實際觀測資料分析出發,結合交通因子,大氣因子與水文條件進行分析與降雨特性水文分析並提出完善的機器學習模型長短期記憶模型(Long Short-Term Memory, LSTM)與空氣品質預測模式。
本研究以廣義可增式模型(Generalized Additive Model, GAM)分析交通因子對於空氣品質的關係,發現車速在 40Km/hr 以下的低車速情況下會加劇初級空氣污染物 CO、NO、NO2、NOX的排放,同時此一現象也反映道路壅塞,車流量大而低車速,造成車流量與空氣污染呈正相關的趨勢。另外本研究也提出新的降雨特徵的分析流程,除了改善傳統降雨分類的不足外,也利用貝氏網路機率圖形模式(Bayesian Network)建立空氣污染的關聯模式,發現降雨因子對於PM2.5 有顯著的影響,該事件內的累積降雨量超過 4mm 即有中等的濕沉降效果,若超過 21mm 則有更顯著的濕沉降效果,而另外本研究也提出新的降雨特徵分類,定義了第Ⅰ型至第Ⅳ型共四類降雨類型其中,代表長延時強降雨的第Ⅰ型降雨有最顯著的濕沉降效果,說明只要降雨事件的延時大於 6 小時都有顯著的濕沉降效果。最後本研究結合 GAM 與貝氏網路模型之分析結果,運用逐步迴歸模型篩選出顯著性因子,並建立 LSTM 模型進行空氣品質的預測模式,預測結果優異,在初級污染物的 CO,NO,NO2,NOX都有約 90%以上的準確率,在次級空氣污染物的 O3,PM2.5,與 PM10 中也有 80%的準確率。
本研究之研究成果量化出車速控制在 40Km/hr 以上,車流量在 1000 輛以內會有最佳的排放模式,並且 6 小時以上降雨或 9mm 以上降雨量會使 PM2.5 下降 20%,可供交通與環境監管單位在政策制訂上的參考。
摘要(英) There has long shown that air pollution has a serious impact on human health. However, due to the highly non-linear and unstable characteristics of air pollutants, and complex chemical reactions affecting air pollutants from different factors, there is still no a complete air quality analysis process and prediction model. Therefore, with the perspective of data exploration, this research analyzes the actual observational data, and combines traffic factors, atmospheric factors, hydrological conditions, rainfall characteristics and hydrological analysis, and proposes a complete machine learning model (Long Short-Term Memory, LSTM) and air quality prediction model.

This study uses the Generalized Additive Model (GAM) to analyze the relationship between traffic factors and air quality, and finds that the low vehicle speed below 40Km/hr will aggravate the primary air pollutants CO, NO, NO2, and
NOX emissions. This phenomenon also reflects road congestion(high traffic volume and low vehicle speed) resulting in a trend of positive correlation to air pollution. In addition, this research also proposes a new analysis process of rainfall characteristics. This research uses Bayesian Network (BN) to establish an air pollution relationship model. It is found that the rainfall factor has a significant effect on PM2.5. If the cumulative rainfall in the event exceeds 4mm, there will be a moderate wet deposition effect to the PM2.5, and if it exceeds 21mm, there will be a more significant wet deposition effect. In the other hand, Type I rainfall, which represents long-term & heavy rainfall, has the most significant wet deposition effect. The deposition effect shows that the duration of the rainfall event is greater than 6 hours, there will be a
significant wet deposition effect. Finally, this research combines the analysis results of GAM and Bayesian network model, and uses stepwise regression model to filter out non-significant factors to establishes an LSTM model to predict air quality. The prediction results are excellent. The primary pollutants CO, NO, NO2, NOX has an accuracy rate of more than 90%, and also an accuracy rate of 80% in the secondary air pollutants O3, PM2.5, and PM10.

The results of this study quantify that the vehicle speed controlled above 40Km/hr and the vehicle flow less than 1,000 vehicles per hours will have the best
emission mode, and rainfall duration more than 6 hours or accumulative rainfall more than 9mm will reduce 20% of PM2.5 in expectation. The results of this research can provide policy and suggestion to the government.
關鍵字(中) ★ 空氣汙染
★ 機器學習建模
★ 降雨特徵分類
★ 貝氏網路分析
★ LSTM模型
★ GAM模型分析
關鍵字(英) ★ Air quality
★ Machine learning model
★ Rainfall type
★ Bayesian Network
★ LSTM model
★ GAM model
論文目次 目錄
摘要 i
Abstract ii
致謝 iv
表目錄 vii
圖目錄 x
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究問題與目的 3
1.3 論文結構 5
第二章 文獻回顧 6
2.1 空氣污染之災害管理 6
2.2 大氣因子對於空氣污染的影響 9
2.3 降雨類型之分類與定義 12
2.4 交通因子對於空氣污染的影響 13
2.5 機器學習模型應用於空污災害管理 15
第三章 研究方法 22
3.1 研究架構 22
3.2 研究區域概述 24
3.3 資料蒐集及描述 25
3.4 克利金法空間推估 41
3.5 小波訊號分析 43
3.6 參數定義降雨類型分類模式 45
3.7 貝氏網路模型 58
3.8 逐步迴歸模型 62
3.9 機器學習方法於空氣污染之應用 63
第四章 結果分析與討論 68
4.1 廣義可增式模型分析 68
4.2 降雨事件與類型分類結果 77
4.3 貝氏網路結果分析 80
4.4 逐步迴歸模型模型預測結果 89
4.5 LSTM 模型預測結果 98
第五章 結論與建議 111
5.1 結論 111
5.2 建議 113
5.3 貢獻 115
參考文獻 116
評審意見回覆表 123
參考文獻 [1] Bell, M. L., et al. (2004). "A retrospective assessment of mortality from the London smog episode of 1952: the role of influenza and pollution." Environmental health perspectives 112(1): 6-8.
[2] Ben‐Gal, I. (2008). "Bayesian networks." Encyclopedia of statistics in quality and reliability 1.
[3] Binaku, K. and M. Schmeling (2017). "Multivariate statistical analyses of air pollutants and meteorology in Chicago during summers 2010-2012." Air Quality, Atmosphere & Health 10(10): 1227-1236.
[4] Brunekreef, B. and S. T. Holgate (2002). "Air pollution and health." The lancet 360(9341): 1233-1242.
[5] Bui, T.-C., et al. (2018). "A deep learning approach for forecasting air pollution in South Korea using LSTM." arXiv preprint arXiv:1804.07891.
[6] Chan, K. Y. and L. Jian (2013). "Identification of significant factors for air pollution levels using a neural network based knowledge discovery system." Neurocomputing 99: 564-569.
[7] Chen, G., et al. (2020). "Short-Term Wind Speed Forecasting With PrincipleSubordinate Predictor Based on Conv-LSTM and Improved BPNN." IEEE Access 8: 67955-67973.
[8] Cheng, F.-Y. and C.-H. Hsu (2019). "Long-term variations in PM 2.5 concentrations under changing meteorological conditions in Taiwan." Scientific reports 9(1): 1-12.
[9] Dominici, F., et al. (2002). "On the use of generalized additive models in timeseries studies of air pollution and health." American journal of epidemiology 117 156(3): 193-203.
[10] Elminir, H. K. (2005). "Dependence of urban air pollutants on meteorology." Science of the total environment 350(1-3): 225-237.
[11] Fan, S. M., et al. (2004). "Impact of air pollution on wet deposition of mineral dust aerosols." Geophysical research letters 31(2).
[12] Graves, A., et al. (2005). Bidirectional LSTM networks for improved phoneme classification and recognition. International conference on artificial neural networks, Springer.
[13] Grimm, A. M. and R. G. Tedeschi (2009). "ENSO and extreme rainfall events in South America." Journal of Climate 22(7): 1589-1609.
[14] Grossi, C. and P. Brimblecombe (2002). The effect of atmospheric pollution on building materials. Journal de Physique IV (Proceedings), EDP sciences.
[15] Gruber, A. and I. Ben-Gal (2012). "Efficient Bayesian network learning for system optimization in reliability engineering." Quality Technology & Quantitative Management 9(1): 97-114.
[16] Guttikunda, S. K., et al. (2014). "Nature of air pollution, emission sources, and management in the Indian cities." Atmospheric Environment 95: 501-510.
[17] Hastie, T. J. and R. J. Tibshirani (1990). Generalized additive models, CRC press.
[18] Hu, X., et al. (2012). "Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2. 5 in Nanjing, China." Atmospheric Environment 57: 146-152.
[19] Huang, Z., et al. (2010). "Response of runoff and soil loss to reforestation and rainfall type in red soil region of southern China." Journal of Environmental
Sciences 22(11): 1765-1773. 118
[20] Hwang, P. A., et al. (2003). "A note on analyzing nonlinear and nonstationary ocean wave data." Applied Ocean Research 25(4): 187-193.
[21] Ito, K., et al. (2004). "Spatial variation of PM2. 5 chemical species and sourceapportioned mass concentrations in New York City." Atmospheric Environment38(31): 5269-5282.
[22] Jain, M., et al. (2000). "Influence of crustal aerosols on wet deposition at urban and rural sites in India." Atmospheric Environment 34(29-30): 5129-5137.
[23] Karppinen, A., et al. (2000). "A modelling system for predicting urban air pollution: model description and applications in the Helsinki metropolitan
area." Atmospheric Environment 34(22): 3723-3733.
[24] Krishan, M., et al. (2019). "Air quality modelling using long short-term memory (LSTM) over NCT-Delhi, India." Air Quality, Atmosphere & Health 12(8): 899-908.
[25] Li, G., et al. (2011). "Bayesian adaptive combination of short-term wind speed forecasts from neural network models." Renewable Energy 36(1): 352-359.
[26] Li, S.-T. and L.-Y. Shue (2004). "Data mining to aid policy making in air pollution management." Expert Systems with Applications 27(3): 331-340.
[27] Lin, Y.-C., et al. (2020). "The improvement of spatial-temporal resolution of PM2. 5 estimation based on micro-air quality sensors by using data fusion technique." Environment international 134: 105305.
[28] Lin, Y. and M. Cheng (2007). "Evaluation of formation rates of NO2 to gaseous and particulate nitrate in the urban atmosphere." Atmospheric Environment 41(9): 1903-1910.
[29] Luo, W., et al. (2008). "A comparison of spatial interpolation methods to estimate continuous wind speed surfaces using irregularly distributed data from
119 England and Wales." International Journal of Climatology: A Journal of the Royal Meteorological Society 28(7): 947-959.
[30] Murase, H., et al. (2009). "Application of a generalized additive model (GAM) to reveal relationships between environmental factors and distributions of
pelagic fish and krill: a case study in Sendai Bay, Japan." ICES Journal of Marine Science 66(6): 1417-1424.
[31] Nalley, D., et al. (2016). "Inter-annual to inter-decadal streamflow variability in Quebec and Ontario in relation to dominant large-scale climate indices." Journal
of hydrology 536: 426-446.
[32] Pérez, P., et al. (2000). "Prediction of PM2.5 concentrations several hours in advance using neural networks in Santiago, Chile." Atmospheric Environment 34(8): 1189-1196.
[33] Pichot, V., et al. (2001). "Wavelet transform of heart rate variability to assess autonomic nervous system activity does not predict arousal from general anesthesia." Canadian Journal of Anesthesia 48(9): 859-863.
[34] Pope III, C. A. and D. W. Dockery (2006). "Health effects of fine particulate air pollution: lines that connect." Journal of the air & waste management association 56(6): 709-742.
[35] Qin, Z., et al. (2008). "Characterization of CO2 and water vapor fluxes in a summer maize field with wavelet analysis." Ecological Informatics 3(6): 397-
409.
[36] Raftery, A. E., et al. (1997). "Bayesian model averaging for linear regression models." Journal of the American Statistical Association 92(437): 179-191.
[37] Ren, X., et al. (2003). "OH and HO2 chemistry in the urban atmosphere of New York City." Atmospheric Environment 37(26): 3639-3651.
120
[38] Rotstayn, L. D. and U. Lohmann (2002). "Tropical rainfall trends and the indirect aerosol effect." Journal of Climate 15(15): 2103-2116.
[39] Søndberg-Jeppesen, N. and F. V. Jensen (2010). "A PGM framework for recursive modeling of players in simple sequential Bayesian games." International journal of approximate reasoning 51(5): 587-599.
[40] Sala, O. E. and W. Lauenroth (1982). "Small rainfall events: an ecological role in semiarid regions." Oecologia 53(3): 301-304.
[41] Selvin, S., et al. (2017). Stock price prediction using LSTM, RNN and CNNsliding window model. 2017 international conference on advances in computing, communications and informatics (icacci), IEEE.
[42] Shahbazi, H., et al. (2016). "The relative contributions of mobile sources to air pollutant emissions in Tehran, Iran: an emission inventory approach." Emission
control science and technology 2(1): 44-56.
[43] Sherstinsky, A. (2020). "Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network." Physica D: Nonlinear Phenomena 404: 132306.
[44] Singh, K. P., et al. (2013). "Identifying pollution sources and predicting urban air quality using ensemble learning methods." Atmospheric Environment 80: 426-437.
[45] Tiwari, S., et al. (2015). "Investigation into relationships among NO, NO2, NOX, O3, and CO at an urban background site in Delhi, India." Atmospheric Research
157: 119-126.
[46] Tsai, D.-H., et al. (2010). "Traffic-related air pollution and cardiovascular mortality in central Taiwan." Science of the total environment 408(8): 1818-1823.121
[47] Vitolo, C., et al. (2018). "Modeling air pollution, climate, and health data using Bayesian Networks: A case study of the English regions." Earth and Space Science 5(4): 76-88.
[48] Wei, J., et al. (2014). "Industrial SO2 pollution and agricultural losses in China: evidence from heavy air polluters." Journal of Cleaner Production 64: 404-413.
[49] Weng, H. and K. Lau (1994). "Wavelets, period doubling, and time–frequency localization with application to organization of convection over the tropical western Pacific." Journal of Atmospheric Sciences 51(17): 2523-2541.
[50] Wu, Q. and H. Lin (2019). "Daily urban air quality index forecasting based on variational mode decomposition, sample entropy and LSTM neural network."Sustainable Cities and Society 50: 101657.
[51] Wu, Y. C., et al. (2015). "Association between air pollutants and dementia risk in the elderly." Alzheimer′s & Dementia: Diagnosis, Assessment & Disease Monitoring 1(2): 220-228.
[52] Xia, L. and Y. Shao (2005). "Modelling of traffic flow and air pollution emission with application to Hong Kong Island." Environmental Modelling & Software 20(9): 1175-1188.
[53] Yan Chan, K. and L. Jian (2013). "Identification of significant factors for air pollution levels using a neural network based knowledge discovery system." Neurocomputing 99: 564-569.
[54] Yang, X., et al. (2015). "Remote sensing monitoring of grassland vegetation growth in the Beijing–Tianjin sandstorm source project area from 2000 to 2010." Ecological indicators 51: 244-251.
[55] Yogo, M. (2008). "Measuring business cycles: A wavelet analysis of economic time series." Economics Letters 100(2): 208-212.122
[56] Yu, H.-L., et al. (2013). "A study of the temporal dynamics of ambient particulate matter using stochastic and chaotic techniques." Atmospheric Environment 69: 37-45.
[57] 趙海波 and 鄭楚光 (2005). "降雨過程中氣溶膠濕沉降的數值模擬." 環境科學學報 25(12): 1590.
[58] 曾於庭, et al. (2018). "應用土地利用迴歸模式推估北部空品區細懸浮微粒之時空分佈." Journal of Photogrammetry and Remote Sensing 23(3): 191-204.
指導教授 林遠見(Yuan-Chien Lin) 審核日期 2021-8-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明