參考文獻 |
[1] 廖建榮,殷菘偉, 2020 ,“ACFM 離岸與海下結構檢測”,Eddyfi Technologies.
[2] Lacalle, R. Cicero, S. Álvarez, J.A. Cicero, R. and Madrazo, V., 2011, “On the analysis of the causes of cracking in a wind tower,” Engineering Failure Analysis, Vol. 18, pp. 1698–1710.
[3] Hassanzadeh, M., 2012, ”Cracks in onshore wind power foundations: causes and consequences,” Elforsk report 11:56.
[4] 章子华,周易,诸葛萍, 2014,”台风作用下大型风电结构破坏模式研究,” 振动与冲击, Vol. 33, pp. 143-148.
[5] Shankar, V. Gill, T. P. S. Mannan, S. L. and Sundaresan, S., 2003, “Solidification cracking in austenitic stainless steel welds,” Sadhana, Vol. 28, pp. 359–382.
[6] “Strength analysis of welded structures,” 網路資料, https://forcetechnology.com/en/services/strength-analysis-of-welded-structures.
[7] Jacob, A. L. M., 2019, “The Influence of Residual Stresses on Structural Integrity of Renewable Energy Marine Structures,” PhD thesis, Cranfield University, UK.
[8] Jacob, A., & Mehmanparast, A., 2021. “Crack growth direction effects on corrosion-fatigue behaviour of offshore wind turbine steel weldments.” Marine Structures, 75, 102881.
[9] Mendes, P., Correia, J. A., De Jesus, A. M., Ávila, B., Carvalho, H., and Berto, F., 2021, ” A brief review of fatigue design criteria on offshore wind turbine support structures.” Frattura ed Integrità Strutturale, Vol. 15, pp. 302-315.
[10] Alonso, T. R., & González Dueñas, E., 2014. “Cracks analysis in onshore wind turbine foundations,” IABSE Symposium: Engineering for Progress, Nature and People, Madrid, Spain, 3-5 September, pp. 1086-1092.
[11] 李易軒, 2020,離岸風力機單樁基座疲勞分析,國立中央大學機械工程學系碩士論文.
[12] Biswal, R., Al Mamun, A., & Mehmanparast, A., 2021. “On the performance of monopile weldments under service loading conditions and fatigue damage prediction.” Fatigue & Fracture of Engineering Materials & Structures, 44(6), 1469-1483.
[13] Perry, M., McAlorum, J., Fusiek, G., Niewczas, P., McKeeman, I., and Rubert, T., 2017.“Crack monitoring of operational wind turbine foundations.” Sensors, 17(8), 1925.
[14] Fujiyama, C., Koda, Y., and Sento, N., 2018. “Evaluation and stability analysis of onshore wind turbine supporting structures.” In Stability control and reliable performance of wind turbines. IntechOpen..
[15] Mehmanparast, A., Brennan, F., and Tavares, I., 2017. “Fatigue crack growth rates for offshore wind monopile weldments in air and seawater”: SLIC inter-laboratory test results. Materials & Design, Vol. 114, 494-504.
[16] Seitl, S., Pokorný, P., Miarka, P., Klusák, J., Kala, Z., & Kunz, L., 2020, “Comparison of fatigue crack propagation behaviour in two steel grades S235, S355 and a steel from old crane way,” MATEC Web of Conferences (Vol. 310, p. 00034). EDP Sciences.
[17] Ziegler, L., Schafhirt, S., Scheu, M., and Muskulus, M., 2016, “Effect of load sequence and weather seasonality on fatigue crack growth for monopile-based offshore wind turbines.Energy Procedia,94, 115-123.
[18] Shi, K., Cai, L., Chen, L., and Bao, C., 2014, “A theoretical model of semi-elliptic surface crack growth. ” Chinese Journal of Aeronautics, 27(3), 730-734.
[19] 風機組成部分,網路資料, https://www.energy.gov/eere/wind/photos/wind-gallery
[20] Miceli F., 2012, “Offshore wind turbines foundation types,” http://www. windfarmbop.com/tag/monopile/
[21] Passon, P., Branner, K., Larsen, S. E., and Jørgen Hvenekær Rasmussen , 2015, “Design of Offshore Wind Turbines,” Chapter 2 in Offshore Wind Turbine Foundation Design, DTU Wind Energy, Copenhagen, Denmark .
[22] Wang, J. K., 2012, “Settlement of Gravity Foundations under Vertical Loads,” M.S. Thesis, National Cheng Kung University, Tainan, Taiwan.
[23] Yu, H., Zeng, X., Li, B., and Lian, J., 2015, “ Centrifuge modeling of offshore wind foundations under earthquake loading. ” Soil Dynamics and Earthquake Engineering, Vol. 77, pp. 402-415.
[24] Malhotra, S., 2007, “Design and Construction Considerations for Offshore Wind Turbine Foundations,” in Proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering, San Diego, California, USA.
[25] Chen, D. Huang K., Bretel, V., and Hou, L., 2015, “Comparison of Structural Properties between Monopile and Tripod Offshore Wind-Turbine Support Structures,” Advances in Mechanical Engineering, Vol. 5, Article ID 175684.
[26] IEC 61400-1, 2005, International Standard Wind Turbines- Part 1: Design Requirements, Third Edition, International Electrotechnical Commission, Geneva, Switzerland.
[27] IEC 61400-3, 2009, International Standard Wind Turbines- Part 3: Design Requirements for Offshore Wind Turbines, First Edition, International Electrotechnical Commission, Geneva, Switzerland.
[28] Farahmand, B., 2001, “ Fracture mechanics of metals, 2001, composites, welds, and bolted joints: application of LEFM, EPFM, and FMDM theory,” Springer, N.Y., USA.
[29] Dowling, N. E., 1988, Mechanical Behavior of Materials, Fourth ed., Pearson, UK.
[30] S355ML材料特性, 網路資料, https://www.salzgitter-flachstahl.de/fileadmin/mediadb/szfg/informationsmaterial/produktinformationen/warmgewalzte_produkte/deu/S355ML.pdf.
[31] The UK standard BS 7910 s, 2013- Guide to methods for assessing the acceptability of flaws in metallic structure.
[32] 崔海平, 2018, 離岸風電場址風況、海洋參數及負載分析技術研究,金屬工業研究發展中心研究報告.
[33] DNV GL, and Garrad Hassan & Partners Ltd, 2016, “Bladed User Manual Version 4.8,”.
[34] 洪浚傑, 2019, 離岸風力機負載分析與結構應力分析, 國立中央大學機械工程學系碩士論文.
[35] Offshore Code Comparison Collaboration (OC3) for IEA Task 23 Offshore Wind Technology and Deployment.
[36] Passon, P., 2015, “Damage Equivalent Wind-Wave Correlations on Basis of Damage Contour Lines for the Fatigue Design of Offshore Wind Turbines,” Renewable Energy, Vol. 81, pp. 723-736.
[37] MADDOX, S. J., 1975, “The effect of mean stress on fatigue crack propagation a literature review,” international Journal of Fracture, Vol. 11, pp. 389-408. |