參考文獻 |
[1] https://ember-climate.org/data/data-explorer/
[2] https://ember-climate.org/insights/research/global-electricity-review-2022/
[3] https://energywhitepaper.tw/pdf/1091118_%E8%83%BD%E6%BA%90%E8%BD%89%E5%9E%8B%E7%99%BD%E7%9A%AE%E6%9B%B8%E6%A0%B8%E5%AE%9A%E6%9C%AC.pdf
[4] https://www.moeaboe.gov.tw/ECW_WEBPAGE/FlipBook/2018EnergyStaHandBook/index.html
[5] https://ember-climate.org/about/why-coal-to-clean/
[6] S.M. Lu, A review of high-efficiency motors: Specification, policy, and technology, Renew. Sust. Energ. Rev. Vol. 59, pp. 1-12, 2016.
[7] A. Alaswad, A. Baroutaji, H. Achour, J. Carton, A. Al Makky, A.G. Olabi, Developments in fuel cell technologies in the transport sector, Int. J. Hydrog. Energy, Vol. 41, pp. 16499-16508, 2016.
[8] A.G. Olabi, T. Wilberforce, E.T. Sayed, K. Elsaid, M.A. Abdelkareem, Prospects of Fuel Cell Combined Heat and Power Systems, Energies, Vol. 13, pp. 4104, 2020.
[9] J.F. Wu, X.Z. Yuan, J.J. Martin, H.J. Wang, J.J Zhang, J. Shen, S.H. Wu, W. Merida, A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies, Int. J. Hydrogen Energy, Vol. 184, pp. 104-109, 2008.
[10] Y. Wang, K.S. Chen, J. Mishler, S.C. Chao, X.C. Adroher, A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, Appl. Energy, Vol. 88, pp. 981-1007, 2011.
[11] V. Mehta, J.S. Cooper, Review and analysis of PEM fuel cell design and manufacturing, J. Power Sources, Vol. 114, pp. 32-53, 2003.
[12] https://www.iea.org/reports/the-future-of-hydrogen
[13] https://en.wikipedia.org/wiki/Power-to-gas
[14] Johnson Matthey PLC, “The fuel cell today industry review 2011 technical report,” Fuel Cell Today, 2011.
[15] K. Kordesch, G. Simader, “Fuel cells and their applications,” VCH Weinheim, 1996.
[16] https://en.wikipedia.org/wiki/Second_law_of_thermodynamics
[17] https://en.wikipedia.org/wiki/Proton-exchange_membrane
[18] https://en.wikipedia.org/wiki/Nafion
[19] S.J. Peighambardoust, S. Rowshanzamir, M. Amjadi, Review of the proton exchange membranes for fuel cell applications, Int. J. Hydrog. Energy, Vol. 35, pp. 9349-9384, 2010.
[20] https://www.materialsnet.com.tw/DocView.aspx?id=7084
[21] F. Gashoul, M.J. Parnian, S. Rowshanzamir, A new study on improving the physicochemical and electrochemical properties of SPEEK nanocomposite membranes for medium temperature proton exchange membrane fuel cells using different loading of zirconium oxide nanoparticles, Int. J. Hydrog. Energy, Vol. 42, pp. 590-602, 2017.
[22] Z.H. Shang, R. Wycisk, P. Pintauro, Electrospun Composite Proton-Exchange and Anion-Exchange Membranes for Fuel Cells, Energies, Vol. 14, 2021.
[23] https://www.materialsnet.com.tw/tech/TechView.aspx?id=325
[24] K. Wang, H.X. Chen, X.F. Zhang, Y.X. Tong, S.Q. Song, P. Tsiakaras, Y. Wang, Iron oxide@graphitic carbon core-shell nanoparticles embedded in ordered mesoporous N-doped carbon matrix as an efficient cathode catalyst for PEMFC, Appl. Catal. B, Vol. 264, 2020.
[25] H. Choi, O.H. Kim, M. Kim, H. Choe, Y.H. Cho, Y.E. Sung, Next-Generation Polymer-Electrolyte-Membrane Fuel Cells Using Titanium Foam as Gas Diffusion Layer, ACS Appl. Mater. Interfaces, Vol. 6, pp. 7665-7671, 2014.
[26] https://www.open.edu/openlearn/science-maths-technology/engineering-technology/manupedia/powder-forging/hot-pressing.
[27] A. Tang, L. Crisci, L. Bonville, J. Jankovic, An overview of bipolar plates in proton exchange membrane fuel cells, J. Renew. Sustain. Energy, Vol. 13, 2021.
[28] M. Marappan, K. Palaniswamy, T. Velumani, K.B. Chul, R. Velayutham, P. Shivakumar, S. Sundaram, Performance Studies of Proton Exchange Membrane Fuel Cells with Different Flow Field Designs – Review, Chem Rec, Vol. 21, pp. 663-714, 2021.
[29] S. Porstmann, T. Wannemacher, W.G. Drossel, A comprehensive comparison of state-of-the-art manufacturing methods for fuel cell bipolar plates including anticipated future industry trends, J Manuf Process, Vol. 60, pp. 366-383, 2020.
[30] 黃鎮江,燃料電池,全華科技圖書股份有限公司,民國九十四年。
[31] Retrieved March 12, 2022, from https://wymetalmesh.en.made-in-china.com/product/yBQJzkUHvMRn/China-Titanium-Strainer-Woven-Wire-Mesh-with-Photocatalysis-Treatment.html
[32] Retrieved March 12, 2022, from https://www.fuelcellstore.com/sigracet-39-bb-carbon-paper-gdl
[33] T. Bystron, M. Vesely, M. Paidar, G. Papakonstantinou, K. Sundmacher, B. Bensmann, R.H. Rauschenbach, K. Bouzek, Enhancing PEM water electrolysis efficiency by reducing the extent of Ti gas diffusion layer passivation, J Appl Electrochem, Vol. 48, pp. 713-723, 2018.
[34] O.J. Murphy, A. Cisar, E. Clarke, Low-cost light weight high power density PEM fuel cell stack, Electrochim. Acta, Vol. 43, pp. 3829-3840, 1998.
[35] H. Choi, O.H. Kim, M. Kim, H. Choe, Y.H. Cho, Y.E. Sung, Next-Generation Polymer-Electrolyte-Membrane Fuel Cells Using Titanium Foam as Gas Diffusion Layer, ACS Appl. Mater. Interfaces, Vol. 6, pp. 7665-7671, 2014.
[36] Y.S Kang, S. Jo, D. Choi, J.Y. Kim, T. Park, S.J. Yoo, Pt-Sputtered Ti Mesh Electrode for Polymer Electrolyte Membrane Fuel Cells, INT J PR ENG MAN-GT, Vol. 6, pp. 271-279, 2019.
[37] J.B Ge, A. Higier, H.T. Liu, Effect of gas diffusion layer compression on PEM fuel cell performance, J. Power Sources, Vol. 159, pp. 922-927, 2006.
[38] S. Shimpalee, U. Beuscher, J.W. Van Zee, Analysis of GDL flooding effects on PEMFC performance, Electrochim. Acta, Vol. 52, pp. 6748-6754, 2007.
[39] V. Radhakrishnan, P. Haridoss, Effect of GDL compression on pressure drop and pressure distribution in PEMFC flow field, Int. J. Hydrog. Energy, Vol. 36, pp. 14823-14828, 2011.
[40] P Lettenmeier, S. Kolb, N. Sata, A. Fallisch, L. Zielke, S. Thiele, A.S. Gago, K.A. Friedrich, Comprehensive investigation of novel pore-graded gas diffusion layers for high-performance and cost-effective proton exchange membrane electrolyzers, Energy Environ. Sci., Vol. 10, pp. 2525-2533, 2017.
[41] T. Chen, S.H. Liu, J.W. Zhang, M.N. Tang, Study on the characteristics of GDL with different PTFE content and its effect on the performance of PEMFC, Int. J. Heat Mass Transf., Vol. 128, pp. 1168-1174, 2019.
[42] A. Aladjem, M. Aucouturier, P. Lacombe, Anodic oxidation and stress corrosion cracking (SCC) of titanium alloys, J. Mater. Sci., Vol. 8, pp.787-792, 1973.
[43] Z. Tass, G. Horvath, V.K. Josepovits, Investigation of the titanium oxidation states by Auger electron spectroscopy, Surf. Sci., Vol. 331, pp. 272-276, 1995.
[44] I. Vaquilaab, L.I. Vergaraa, M.C.G. Passeggi Jr, R.A. Vidala, J. Ferrón, Chemical reactions at surfaces: titanium oxidation, Surf. Coat. Technol., Vol. 122, pp. 67-71, 1999.
[45] Y.T. Sul, C.B. Johansson, Y. Jeong, T. Albrektsson, The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes, Med Eng Phys, Vol. 23, pp. 329-346, 2001.
[46] N.K. Kuromoto, R.A. Simão, G.A. Soares, Titanium oxide films produced on commercially pure titanium by anodic oxidation with different voltages, Mater Charact, Vol. 58, pp. 117-121, 2007.
[47] J.X. Zhang, F. Coms, S. Kumaraguru, Editors′ Choice-Necessity to Avoid Titanium Oxide as Electrocatalyst Support in PEM Fuel Cells: A Membrane Durability Study, J. Electrochem. Soc., Vol. 168, 2021.
[48] M. Takeuchi, Y. Abe, Y. Yoshida, Y. Nakayama, M. Okazaki, Y. Akagawa, Acid pretreatment of titanium implants, Biomaterials, Vol. 24, pp. 1821-1827, 2003.
[49] G.A. El-Mahdy, Formation and dissolution behavior of anodic oxide films on titanium in oxalic acid solutions, Rare Metal Mat Eng., Corros., Vol. 63, pp. 299-306, 2007.
[50] H. Xu, W. Yan, L. You, Effects of Various Acids Treatment on the Properties of Titanium Substrate, Vol. 40, pp. 1550-1554, 2011.
[51] M. Eikerling, A.A. Kornyshev, Electrochemical impedance of the cathode catalyst layer in polymer electrolyte fuel cells, J. Electroanal. Chem., Vol. 475, pp. 107-123, 1999.
[52] X. Yuan, J.C. Sun, M. Blanco, H. Wang, J. Zhang, D.P. Wilkinson, AC impedance diagnosis of a 500W PEM fuel cell stack Part I:Stack impedance, J. Power Sources, Vol. 161, pp. 908-928, 2006.
[53] X. Yan, M. Hou, L. Sun, D. Liang, Q. Shen, H. Xu, P. Ming, B. Yi, AC impedance characteristics of a 2kW PEM fuel cell stack under different operating conditions and load changes, Int. J. Hydrogen Energy, Vol. 32, pp. 4358-4364, 2007.
[54] R. Chen, Y. Qin, Q. Du, J Peng, Effects of Clamping Force on the Operating Behavior of PEM Fuel Cell, SAE International by University of British Columbia, Monday, September 24, 2018.
[55] D. Chu, R.Z. Jiang, Comparative studies of polymer electrolyte membrane fuel cell stack and single cell, J. Power Sources, Vol. 80, pp. 226-234, 1999.
[56] https://www.researchgate.net/figure/Nyquist-plot-of-PEMFC-17_fig3_327732491.
[57] https://www.metrohm-autolab.com/Products/Echem/NSeriesFolder/PGSTAT302N
[58] U. Balachandran, N.G. Eror, Raman spectra of titanium dioxide, J Solid State Electrochem, Vol. 42, pp. 276-282, 1982
[59] S. Porto, P.A. Fleury, T.C. Damen, Raman Spectra of TiO2, MgF2, ZnF2, and MnF2, Phys. Rev. Vol. 154, pp. 522, 1967.
[60] B. Santara, P.K. Giri, K. Imakita, M. Fujii, Evidence of oxygen vacancy induced room temperature ferromagnetism in solvothermally synthesized undoped TiO2 nanoribbons, Nanoscale, Vol. 5, pp. 5476-5488, 2013. |