博碩士論文 109323027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.22.242.205
姓名 陳韋豪(Wei-Hao Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 移動式顆粒床過濾器應用於移除酸性氣體之研究
相關論文
★ 筆記型電腦改良型自然對流散熱設計★ 移動式顆粒床過濾器濾餅流場與過濾性能之研究
★ IP67防水平板電腦設計研究★ 汽車多媒體導航裝置散熱最佳化研究
★ 流動式顆粒床過濾器三維流場觀察及能性能測試★ 流動式顆粒床過濾器冷性能測試
★ 流動式顆粒床過濾器過濾機制研究★ 二維流動式顆粒床過濾器內部配置設計研究
★ 循環式顆粒床過濾器過濾性能研究★ 流動式顆粒床過濾器之流場型態設計與研究
★ 流動式顆粒床過濾器之流動校正單元設計與分析研究★ 流動式顆粒床過濾器之雙葉片型流動校正單元設計與冷性能過濾機制研究
★ 稻稈固態衍生燃料成型性分析之研究★ 流動式顆粒床過濾器之不對稱葉片設計與冷性能過濾機制研究
★ 流動式顆粒床過濾器之滾筒式粉塵分離系統與冷性能過濾及破碎效應研究★ 稻稈固態衍生燃料加入添加物成型性分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 全球暖化、氣候異常、能源危機是這個世紀以來人類必須面對的議題,IGCC與PFBC等先進的燃煤機組被學者們相繼提出,而高溫氣體淨化技術對於整體技術而言有降低成本、增加顯能利用率等優點。高溫氣體淨化技術中,移動式顆粒床過濾器已被應用於去除粉塵且有耐高溫、耐酸、耐鹼並高可靠度、過濾效率高等優點。
本研究基於前人所開發之移動式顆粒床過濾器,將其應用於移除酸性氣體,並針對其性能進行探討。本研究濾材採用具經濟性的石灰石,並配置500ppmv二氧化硫作為酸性氣體移除之對象,並於顆粒床過濾器出口處安裝氣體分析儀進行線上量測,以評估整體的脫硫效率。
本研究探討了表面風速、入口溫度、加熱溫度與濾材質量流率對脫硫效率的影響。實驗結果顯示溫度主窄顆粒床過濾器之脫硫性能,在加熱溫度800℃下,濾材的脫硫效率可達99%。隨濾材質量流率愈快,脫硫效率有降低之趨勢,這是由於濾材無法被充分加熱而導致;而表面風速與脫硫效率之間的作用較弱。
從吸附硫份後的濾材微結構進行探討,在加熱溫度800℃的實驗條件下,濾材表面產生許多細微孔洞,此特徵也說明了間接脫硫的發生,並也提升整體脫硫性能。從EDX組份分析中,隨加熱溫度從600℃提高至800℃,濾材硫份占比相對應的從0.17%提升至4.29%,這也直接說明溫度對於移動式顆粒床過濾器之脫硫性能而言乃為主要關鍵參數。
摘要(英) Global warming, climate anomalies, and energy crisis are issues that human beings must face in this century. Advanced coal-fired power plant such as IGCC and PFBC have been proposed by scholars. In IGCC and PFBC, the high-temperature gas cleaning technology can reduce costs and increase the sensible energy utilization and have other advantages. In the high temperature gas cleaning technology, the moving bed filter has been used to remove dust and has the advantages of high temperature resistance, acid resistance, alkali resistance, high reliability and high filtration efficiency.
This study is based on the previously developed moving bed filter, which is applied to remove acid gas, and its performance is discussed. In this study, the filter material adopts economical limestone. The object of acid gas removal is as 500ppmv sulfur dioxide. The gas analyzer is installed at the outlet of the moving bed filter for online measurement to evaluate the desulfurization efficiency.
In this study, the effects of superficial velocity, inlet temperature, heating temperature and filter mass flow rate on desulfurization efficiency were investigated. The experimental results show that the desulfurization performance mainly depends on temperature. Under the heating temperature 800℃ condition, the desulfurization efficiency can reach 99%. The desulfurization efficiency tends to decrease as the mass flow rate is faster, which is caused by the inability of the filter material to be heated sufficiently. The effect between the superficial velocity and the desulfurization efficiency is weak.
The microstructure of the filter material after adsorption of sulfur content is observed. Under the heating temperature 800 °C condition, many fine pores are formed on the surface of the filter material. This feature also indicates the occurrence of indirect desulfurization, and it also improves the desulfurization performance. From the EDX component analysis, as the heating temperature increases from 600 °C to 800 °C, the proportion of sulfur content in the filter material increases from 0.17% to 4.29%, which directly shows that temperature affects the desulfurization performance of the moving bed filter.
關鍵字(中) ★ 移動式顆粒床過濾器
★ 高溫氣體淨化
★ 乾式脫硫
★ 鈣基脫硫
關鍵字(英) ★ Moving bed filter
★ High-temperature gas cleaning technology
★ Dry desulfurization
★ Calcium-based desulfurization
★ Hot gas clean up
論文目次 摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 ix
符號說明 x
第一章 緒論 1
1.1 前言 1
1.1.1 粒狀汙染物移除設備與原理 2
1.1.2 酸性氣體移除設備與原理 3
1.2 研究動機與目的 5
1.3 文獻回顧 5
1.3.1 排煙脫硫技術 6
1.3.2 移動式顆粒床移除汙染物之應用 7
1.4 論文章節架構 7
第二章 實驗設備與方法 13
2.1 實驗配置 13
2.1.1 實驗系統架構 13
2.1.2 實驗設備 13
2.1.3 系統特性 17
2.2 實驗設計參數 17
2.3 實驗步驟 18
第三章 實驗結果與討論 35
3.1 脫硫機制探討 35
3.2 脫硫效率(SO2 removal efficiency) 36
3.3 系統運行狀況 36
3.4 加熱溫度對脫硫效率的影響 37
3.5 入口溫度對脫硫效率的影響 37
3.6 濾材質量流率對脫硫效率的影響 38
3.7 表面風速與脫硫效率探討 38
3.8 壓降與脫硫效率之探討 39
3.9 濾材微結構與組份探討 39
第四章 結論 58
參考文獻 59


圖目錄
圖1.1全球平均溫度上升狀況(12萬5千年到至今)[1] 8
圖1.2台灣溫室氣體排放量組成(1990-2019)[2] 8
圖1.3台電歷年發電裝置容量結構[3] 9
圖1.4重力沉降室[6] 9
圖1.5旋風分離器[6] 10
圖1.6靜電集塵器[6] 10
圖1.7燭式過濾器[7] 11
圖1.8顆粒床過濾器[25] 11
圖1.9濕式洗滌器[4] 12
圖2.1實驗系統架構 21
圖2.2移動式顆粒床過濾器示意圖[27] 21
圖2.3顆粒床過濾器構型(楊商工業繪製) 22
圖2.4上料斗構型 22
圖2.5濾材(石灰石) 23
圖2.6石灰石粒徑分佈 23
圖2.7濾材質量流率校正 24
圖2.8空壓機與冷乾機 24
圖2.9氮氣產生器 25
圖2.10二氧化硫浮子流量控制閥(左)與調壓閥(右) 25
圖2.11二氧化硫浮子流量控制閥校正 26
圖2.12純SO2鋼瓶 26
圖2.13管路加熱器 27
圖2.14上料斗和本體加熱器 27
圖2.15電子天平 28
圖2.16電腦圖形監控系統 29
圖2.17風速管(左)差壓傳送器(中、右) 29
圖2.18熱電偶 30
圖2.19氣體分析儀 30
圖2.20氣體分析儀軟體操作介面 31
圖2.21掃描式電子顯微鏡 31
圖2.22 X射線能量散布分析儀 32
圖2.23實驗參數示意圖 32
圖2.24實驗流程 33
圖3.1實際運作狀況 41
圖3.2脫硫效率(X軸為加熱溫度) 42
圖3.3入口溫度600 ℃脫硫效率(X軸為加熱溫度) 43
圖3.4脫硫效率(X軸為入口溫度) 44
圖3.5加熱溫度800℃下的脫硫效率(X軸為入口溫度) 45
圖3.6脫硫效率(X軸為質量流率) 46
圖3.7加熱溫度800℃脫硫效率(X軸為質量流率) 47
圖3.8脫硫效率與表面風速比較(X軸為入口溫度) 48
圖3.9壓降與表面風速隨時間變化 49
圖3.10壓降與停留時間 50
圖3.11壓降與脫硫效率 51
圖3.12濾材生料微結構 51
圖3.13表面風速45cm/s入口溫度600℃加熱溫度600℃濾材微結構 52
圖3.14表面風速45cm/s入口溫度600℃加熱溫度800℃之濾材微結構 52
圖3.15表面風速30cm/s入口溫度400℃加熱溫度700℃之濾材微結構 52
圖3.16表面風速30cm/s入口溫度400℃加熱溫度800℃之濾材微結構 52
圖3.17文獻[41]鈣化與非鈣化石灰石顯微結構差異 53
圖3.18原濾材組份分析 53
圖3.19加熱溫度600℃濾材組份分析 54
圖3.20加熱溫度700℃濾材組份分析 54
圖3.21加熱溫度800℃濾材組份分析 55

表目錄
表1.1煤燃燒與氣化的差異[8] 12
表2.1加熱設備性能 33
表2.2風速量測設備 34
表2.3實驗設計參數表 34
表3.1設備準確度與解析度 56
表3.2量測與控制理論值 56
表3.3脫硫效率不確定性 56
表3.4表面風速對脫硫效率之特例 57
表3.5吸附後濾材組份比較 57
參考文獻 [1] IPCC, Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2021.
[2] 中華民國環境保護署. (2021). 我國國家溫室氣體排放清冊報告(2021年版).
[3] 台灣電力公司. "歷年裝置容量及結構." https://www.taipower.com.tw/tc/chart_m/a02_%e9%9b%bb%e5%8a%9b%e4%be%9b%e9%9c%80%e8%b3%87%e8%a8%8a_%e9%9b%bb%e6%ba%90%e9%96%8b%e7%99%bc%e8%a6%8f%e5%8a%83_%e6%ad%b7%e5%b9%b4%e8%a3%9d%e7%bd%ae%e5%ae%b9%e9%87%8f%e5%8f%8a%e7%b5%90%e6%a7%8b.html (accessed Jun. 17, 2022).
[4] R. Zevenhoven and P. Kilpinen, "Control of pollutants in flue gases and fuel gases," Helsinki Univ. of Technology, Otaniemi (Finland). Energy Engineering and Environmental Protection, Finland, 2001.
[5] V. Zakkay, E. A. M. Gbordzoe, K. M. Sellakumar, and C. Q. Lu, "Performance of Hot Gas Clean-Up Devices Tested at the NYU DOE-PFBC Facility," in 1989 Joint Power Generation Conference: GT Papers, 1989, vol. 1989 Joint Power Generation Conference: GT Papers, V001T01A008, doi: 10.1115/89-jpgc/gt-8. [Online]. Available: https://doi.org/10.1115/89-JPGC/GT-8
[6] L. K. Wang, N. C. Pereira, and Y.-T. Hung, Air pollution control engineering. Springer, 2004.
[7] S. Heidenreich, "Hot gas filtration – A review," Fuel, vol. 104, pp. 83-94, 2013/02/01/ 2013, doi: https://doi.org/10.1016/j.fuel.2012.07.059.
[8] L. Douglas Smoot and P. J. Smith, Coal combustion and gasification (The Plenum Chemical Engineering). New York: Elsevier, 1985.
[9] D. Vamvuka, C. Arvanitidis, and D. Zachariadis, "Flue Gas Desulfurization at High Temperatures: A Review," Environmental Engineering Science, vol. 21, no. 4, pp. 525-548, 2004, doi: 10.1089/1092875041358557.
[10] 張立群, "移動式顆粒床過濾器應用於中高溫除塵及除焦油," 碩士, 機械工程學系, 國立中央大學, 2018. [Online]. Available: http://thesis.lib.nccu.edu.tw/record/#GC105323052%22.
[11] 廖承恩, "移動式顆粒床過濾器之去除焦油效率的研究," 碩士, 機械工程學系, 國立中央大學, 2018. [Online]. Available: http://thesis.lib.nccu.edu.tw/record/#GC106323101%22.
[12] 張家維, "兩階段移動式顆粒床之研究," 博士, 機械工程學系, 國立中央大學, 2020. [Online]. Available: http://thesis.lib.nccu.edu.tw/record/#GC973403011%22.
[13] S. Falcone Miller and B. G. Miller, "7 - Advanced flue gas cleaning systems for sulfur oxides (SOx), nitrogen oxides (NOx) and mercury emissions control in power plants," in Advanced Power Plant Materials, Design and Technology, D. Roddy Ed.: Woodhead Publishing, 2010, pp. 187-216.
[14] M. S. Kang, H. S. Choi, J. Shin, T. U. Yu, and J. Hwang, "Dry process for SO2 and NOx removal via gas-to-particle conversion with ozone and ammonia injection," Separation and Purification Technology, vol. 281, p. 119835, 2022/01/15/ 2022, doi: https://doi.org/10.1016/j.seppur.2021.119835.
[15] S. Ozawa, L. Huang, H. Matsuda, and M. Hasatani, "Dry gas cleaning of coexisting SOx and NOx by manganese ore," Energy Conversion and Management, vol. 42, no. 15, pp. 1987-1995, 2001/10/11/ 2001, doi: https://doi.org/10.1016/S0196-8904(01)00056-5.
[16] J. Lee, M. Park, H. Shin, Y. Choi, D. Lee, and M. Hong, "Removal of SOx and NOx by catalytic ceramic fiber filters," High Temperature Gas Cleaning, pp. 706-713, 1999.
[17] X. Shen et al., "Numerical simulation of NO and SO2 emission dynamic characteristics during thermal start-up of CFB boiler," Particulate Science and Technology, pp. 1-11, 2022, doi: 10.1080/02726351.2022.2032889.
[18] Y. Deng, R. Ansart, J. Baeyens, and H. Zhang, "Flue Gas Desulphurization in Circulating Fluidized Beds," Energies, vol. 12, no. 20, p. 3908, 2019. [Online]. Available: https://www.mdpi.com/1996-1073/12/20/3908.
[19] J. Cheng et al., "Sulfur removal at high temperature during coal combustion in furnaces: a review," Progress in Energy and Combustion Science, vol. 29, no. 5, pp. 381-405, 2003/01/01/ 2003, doi: https://doi.org/10.1016/S0360-1285(03)00030-3.
[20] K. J. Ladwig and G. M. Blythe, "3 - Flue-gas desulfurization products and other air emissions controls," in Coal Combustion Products (CCP′s), T. Robl, A. Oberlink, and R. Jones Eds.: Woodhead Publishing, 2017, pp. 67-95.
[21] P. Gupta, L. G. Velazquez-Vargas, C. Valentine, and L.-S. Fan, "Moving bed reactor setup to study complex gas-solid reactions," Review of Scientific Instruments, vol. 78, no. 8, p. 085106, 2007, doi: 10.1063/1.2760746.
[22] A. Abad, J. Adánez, F. García-Labiano, L. F. de Diego, and P. Gayán, "Hot Coal-Gas Desulfurization with Calcium-Based Sorbents in a Pressurized Moving-Bed Reactor," Energy & Fuels, vol. 18, no. 5, pp. 1543-1554, 2004/09/01 2004, doi: 10.1021/ef040039f.
[23] R. Enick, T. Gale, J. Klara, and J. Jones, "A mathematical model of an isothermal, flue gas desulforization, copper oxide moving‐bed reactor," Environmental Progress, vol. 18, no. 1, pp. 60-68, 1999, doi: 10.1002/ep.670180122.
[24] R. J. Young and J. T. Yeh, "Computer simulation of a flue gas desulfurization moving-bed reactor," Environmental progress., vol. 12, no. 3, pp. 200-207, 1993, doi: 10.1002/ep.670120309.
[25] J. L. Guillory, "High-Temperature Particulate Removal by Moving Bed Granular Filtration," in ASME 1980 International Gas Turbine Conference and Products Show, 1980, vol. Volume 1B: General, V01BT02A022, doi: 10.1115/80-gt-116. [Online]. Available: https://doi.org/10.1115/80-GT-116
[26] S. S. Hsiau, J. Smid, F. H. Tsai, J. T. Kuo, and C. S. Chou, "Placement of flow-corrective elements in a moving granular bed with louvered-walls," Chemical Engineering and Processing-Process Intensification, vol. 43, no. 8, pp. 1037-1045, Aug 2004, doi: 10.1016/j.cep.2003.10.006.
[27] Y. S. Chen, S. S. Hsiau, S. C. Lai, Y. P. Chyou, H. Y. Li, and C. J. Hsu, "Filtration of dust particulates with a moving granular bed filter," Journal of Hazardous Materials, vol. 171, no. 1-3, pp. 987-994, Nov 2009, doi: 10.1016/j.jhazmat.2009.06.103.
[28] Y. S. Chen and S. S. Hsiau, "Cake formation and growth in cake filtration," Powder Technology, vol. 192, no. 2, pp. 217-224, Jun 2009, doi: 10.1016/j.powtec.2008.12.014.
[29] Y. S. Chen and S. S. Hsiau, "Influence of filtration superficial velocity on cake compression and cake formation," Chemical Engineering and Processing-Process Intensification, vol. 48, no. 5, pp. 988-996, May 2009, doi: 10.1016/j.cep.2009.01.006.
[30] C. J. Hsu and S. S. Hsiau, "A study of filtration performance in a cross-flow moving granular bed filter: The influence of gas flow uniformity," Powder Technology, vol. 274, pp. 20-27, Apr 2015, doi: 10.1016/j.powtec.2015.01.006.
[31] 許展瑞, "顆粒床整合系統最適化設計與連續過濾驗證之研究," 碩士, 機械工程學系, 國立中央大學, 2014. [Online]. Available: http://thesis.lib.nccu.edu.tw/record/#GC101323071%22.
[32] 許端祐, "移動式顆粒床之進口粉塵濃度與再生循環對過濾效率的影響," 碩士, 機械工程學系, 國立中央大學, 2016. [Online]. Available: http://thesis.lib.nccu.edu.tw/record/#GC103323058%22.
[33] 馬勝銘, "循環式顆粒床過濾器過濾性能研究," 碩士, 國立中央大學, 2004.
[34] 張益綸, "顆粒床過濾連續化整合系統開發研究," 碩士, 機械工程學系, 國立中央大學, 2012. [Online]. Available: http://thesis.lib.nccu.edu.tw/record/#GC100323042%22.
[35] 張立揚, "移動式顆粒床過濾器應用於去除PM2.5之研究," 碩士, 能源工程研究所, 國立中央大學, 2020. [Online]. Available: http://thesis.lib.nccu.edu.tw/record/#GC107328010%22.
[36] F. M. Thomson, "Storage and Flow of Particulate Solids," in Handbook of Powder Science & Technology, M. E. Fayed and L. Otten Eds. Boston, MA: Springer US, 1997, pp. 389-486.
[37] M. J. H. Snow, J. P. Longwell, and A. F. Sarofim, "Direct sulfation of calcium carbonate," Industrial & Engineering Chemistry Research, vol. 27, no. 2, pp. 268-273, 1988/02/01 1988, doi: 10.1021/ie00074a011.
[38] Y. B. Kim, Y. R. Gwak, S. I. Keel, J. H. Yun, and S. H. Lee, "Direct desulfurization of limestones under oxy-circulating fluidized bed combustion conditions," Chemical Engineering Journal, vol. 377, p. 119650, 2019/12/01/ 2019, doi: https://doi.org/10.1016/j.cej.2018.08.036.
[39] S. Michel, "Experimental Data and Calculation of Kinetic Laws of Heterogeneous Reactions," in An Introduction to Chemical Kinetics, 2011, pp. 109-133.
[40] S. Arabi and H. H. Rafsanjani, "Modeling and Simulation of Noncatalytic Gas-Solid Reaction in a Moving Bed Reactor," Chemical Product and Process Modeling, vol. 3, no. 1, 2008, doi: doi:10.2202/1934-2659.1230.
[41] W. Widayat, T. Darmawan, H. Hadiyanto, and R. A. Rosyid, "Preparation of Heterogeneous CaO Catalysts for Biodiesel Production," Journal of Physics: Conference Series, vol. 877, p. 012018, 2017/07 2017, doi: 10.1088/1742-6596/877/1/012018.
[42] C. Tullin and E. Ljungstroem, "Reaction between calcium carbonate and sulfur dioxide," Energy & Fuels, vol. 3, no. 3, pp. 284-287, 1989/05/01 1989, doi: 10.1021/ef00015a003.
[43] R. Figliola and D. Beasley, Theory and design for mechanical measurements, Fifth edition. 2011.
[44] J. Ingham, I. Dunn, E. Heinzle, J. Prenosil, and J. Snape, "Chemical Engineering Dynamics: An Introduction to Modelling and Computer Simulation: Third Edition," Chemical Engineering Dynamics: An Introduction to Modelling and Computer Simulation: Third Edition, pp. 1-618, 10/25 2007, doi: 10.1002/9783527614219.
[45] S. Ergun, "Fluid flow through packed columns," in Chemical Engineering Progress, 1952, vol. 48, pp. 89-94.
指導教授 蕭述三(Shu-San Hsiau) 審核日期 2022-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明