博碩士論文 109323044 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:18.118.253.117
姓名 張鈞奕(Chun-Yi Chang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 鋁合金板材殘留應力消除模擬研究
(Simulation on Residual Stress Relief for Aluminum Alloy Plate)
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 核電廠元件疲勞壽命模擬分析★ 可撓式OLED封裝薄膜和ITO薄膜彎曲行為分析
★ MOCVD玻璃承載盤溫度場分析★ 不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為
★ 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究★ AISI 347不銹鋼腐蝕疲勞行為
★ 環境因素對沃斯回火球墨鑄鐵高週疲勞之影響★ AISI 347不銹鋼在不同應力比及頻率下之腐蝕疲勞行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-1以後開放)
摘要(中) 在鋁合金的製造過程中,熱處理是強化鋁合金的關鍵步驟,然而,淬火過程中強烈的熱梯度會導致較高的殘留應力,消除鋁板的殘留應力可以避免在後續加工操作中產生變形。本研究的目的是採用有限元方法 (FEM) 來模擬商用尺寸鋁板在淬火過程中的溫度場以及伴隨產生的殘留應力,以ANSYS APDL 軟體來建立有限元模型,也模擬拉伸消除殘留應力的過程;在模擬中,使用了隨溫度變化的熱對流係數及材料性質。
另外,使用尺寸為90 mm x 90 mm x 16 mm的試片進行淬火實驗,與模擬結果比對,以驗證FEM模型的有效性。實驗過程,整塊試片加熱到475 °C之後,在很短的時間內浸入水中進行水淬,並藉由黏貼於試片表面中心的K-type熱電偶來量得淬火過程中的溫度變化。鋁塊與水之間的熱對流係數藉由逆向熱傳導分析來求得,隨後用於模擬計算實驗試片的殘留應力。模擬計算的殘留應力結果與實驗量測具有合理的一致性,確認FEM模型的有效性及應用可行性。
對於厚度為20-80 mm的商用尺寸鋁板,淬火後的殘留應力隨著厚度的增加而增加,並且會趨近於一個飽和值。在沒有夾持效應下的理想拉伸狀態,施加1.5% 至4.5%的拉伸量來釋放殘留應力,結果顯示,在拉伸3.5%之後,殘留應力之最大張應力以及最大壓應力皆可以被消除達95%。隨著拉伸量增加至4.5%,殘留應力的消除效果並沒有進一步的增加。端面的夾持效應會導致拉伸過後的應力分布區分為夾持區、過渡區及均勻區。在夾持區的應力並沒有明顯被消除,而消除後的殘存應力是從過渡區向均勻區逐漸減小。在均勻區內的應力可以得到顯著的消除效果,但是在過渡區則還會有較大的殘留應力存在。
以應變的觀點來看,在理想拉伸狀態下拉伸量為3.5% 時,為了消除殘留應力所需要的真實應變為0.035。對端面夾持的拉伸狀況而言,在夾持區域內會有較小的真實應變值存在,但是真實應變會從過渡區向均勻區逐漸增加;當施以2.5% 的公稱拉伸量時,3.3% 的真實應變值會在夾持區長度為150 mm時發生在均勻區,而3.9% 的真實應變則會在夾持區長度為300 mm時發生在均勻區,也因此讓均勻區內的應力得以有效的消除。
摘要(英) In the fabrication process of aluminum alloys, heat treatment process is a vital step to strengthen the aluminum alloys. However, severe thermal gradients during the immersion quenching process results in high magnitude of thermally-induced residual stresses. Reducing the residual stress in the aluminum plate is able to avoid distortions in the following machining operations. The aim of this study was to employ the finite element method (FEM) to simulate the temperature field during the quenching process and the resulted residual stresses in commercially-sized aluminum plates. An FEM model with ANSYS codes was developed and used. Furthermore, stress relief by tensile stretching was also simulated. Temperature-dependent heat transfer coefficients (HTCs) and material properties were considered.
A specimen size of 90 mm x 90 mm x 16 mm was used to conduct the quenching experiment for validation of the FEM model. The block was heated to 475 °C and then immersed in a bucket of water within a short period of time. The center on one side of the specimen was attached with a K-type thermocouple to measure the temperature history during the quenching process. The HTCs were calculated by an inverse heat transfer analysis and applied in the calculation of residual stress in the specimen. The simulation results showed a reasonable agreement with the experimental results.
For commercially-sized aluminum plates with a thickness of 20-80 mm, the residual stress after quenching increased and reached a saturated level with increasing thicknesses. Further, tensile stretching ratios of 1.5% to 4.5% were employed to relieve the residual stress under ideal stretching without end-clamping. With 3.5% stretching, both maximum tensile and compressive parts of residual stress were reduced by 95%. No significantly further improvement was found with the increase of stretching ratio to 4.5%. The stress distribution on the plate with end-clamping after tensile stretching was divided into clamping region, transition region, and uniform region. The stress in the clamping region was not relieved significantly while it was increasingly reduced from the transition region to the uniform region. In the uniform region, the stress was relieved to a significant extent while a higher magnitude of residual stress still existed in the transition region.
In terms of mechanical strain, the selected optimal stretching ratio of 3.5% in ideal stretching indicated the true strain needed to effectively relieve the residual stress was 0.035. For stretching with end-clamping, a rather small true strain existed in the clamping region while the true strain increased from the transition region to the uniform region. For a nominal stretching ratio of 2.5%, a true strain of 3.3% and 3.9% in the uniform region was achieved with 150-mm and 300-mm clamping length, respectively, which resulted in an effective stress relief in the uniform region.
關鍵字(中) ★ 鋁合金
★ 淬火殘留應力
★ 有限元素法
★ 應力釋放
關鍵字(英) ★ aluminium alloy
★ quenching residual stress
★ finite element method
★ stress relief
論文目次 ABSTRACT I
ACKNOWLEDGEMENTS V
TABLE OF CONTENTS VI
LIST OF TABLES VIII
LIST OF FIGURES IX
1. INTRODUCTION 1
1.1 Fabrication Process of Aluminum Alloys 1
1.2 Residual Stress and Relief Methods 2
1.2.1 Residual stress control during quenching process 2
1.2.2 Residual stress relief by mechanical techniques 4
1.3 Numerical Modeling 10
1.4 Purpose 13
2. NUMERICAL MODELING 15
2.1 Finite Element Method 15
2.2 Thermal Analysis 19
2.3 Mechanical Analysis 20
2.3.1 Stress calculation 20
2.3.2 Tensile stretching 21
2.4 Material Properties 23
2.4.1 Aluminum alloy plate 23
2.4.2 Thermal and mechanical properties 23
3. EXPERIMENT 26
4. RESULTS AND DISCUSSION 29
4.1 Comparison of Numerical and Experimental Results 29
4.1.1 Temperature measurement in quenching process 29
4.1.2 Residual stress after quenching process 30
4.2 Residual Stress Analysis 32
4.2.1 Formation of residual stress during quenching process 32
4.2.2 Residual stresses in different thicknesses 39
4.2.2 Stress relief with various stretching ratios 47
4.3 End-Clamping Effect on Tensile Stretching Process 62
4.3.1 End-clamping effect on stress relief 62
4.3.2 Mechanical strain variation 75
5. CONCLUSIONS 80
REFERENCES 82
APPENDIX 87
參考文獻 1. T. Dursun and C. Soutis, “Recent Developments in Advanced Aircraft Aluminum Alloys,” Materials & Design, Vol. 56, pp. 862-871, 2014.
2. R. Pan, Z. Shi, C. M. Davies, C. Li, M. Kaye, and J. Lin, “An Integrated Model to Predict Residual Stress Reduction by Multiple Cold Forging Operations in Extra-large AA7050 T-section Panels,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 232, pp. 1319-1330, 2016.
3. J. Robinson, R. L. Cudd, D. Tanner, and G. Dolan, “Quench Sensitivity and Tensile Property Inhomogeneity in 7010 Forgings,” Journal of Materials Processing Technology, Vol. 119, pp. 261-267, 2001.
4. J. S. Robinson, D. A. Tanner, C. E. Truman, A. M. Paradowska, and R. C. Wimpory, “The Influence of Quench Sensitivity on Residual Stresses in the Aluminium Alloys 7010 and 7075,” Materials Characterization, Vol. 65, pp. 73-85, 2012.
5. S. Zhang, Y. Wu, and H. Gong, “A Modeling of Residual Stress in Stretched Aluminum Alloy Plate,” Journal of Materials Processing Technology, Vol. 212, pp. 2463-2473, 2012.
6. V. Richter-Trummer, D. Koch, A. Witte, J. F. dos Santos, and P. M. S. T. de Castro, “Methodology for Prediction of Distortion of Workpieces Manufactured by High Speed Machining Based on an Accurate Through-the-thickness Residual Stress Determination,” The International Journal of Advanced Manufacturing Technology, Vol. 68, pp. 2271-2281, 2013.
7. O. G. Senatorova, I. F. Mikhailova, A. L. Ivanov, M. M. Mitasov, and V. V. Sidel’nikov, “Low-Distortion Quenching of Aluminum Alloys in Polymer Media,” Metal Science and Heat Treatment, Vol. 57, pp. 669-672, 2016
8. G. S. Sarmiento, C. Bronzini, A. C. Canale, L. C. F. Canale, and G. E. Totten, “Water and Polymer Quenching of Aluminum Alloys: A Review of the Effect of Surface Condition, Water Temperature, and Polymer Quenchant Concentration on the Yield Strength of 7075-T6 Aluminum Plate,” Journal of ASTM International, Vol. 6, pp. 1-18, 2009.
9. L. L. M. Albano, P. M. Kavalco, G. E. Totten, and L. C. F. Canale, “IFHTSE Global 21: Heat Treatment and Surface Engineering in the Twenty-first Century Part 19 - Type I Quenchants for Quenching of Aluminium: A Review,” International Heat Treatment & Surface Engineering, Vol. 6, pp. 146-152, 2012.
10. A. V. Sverdlin, G. E. Totten, and G. M. Websterz, “Quenching Media Based on Polyalkylene Glycol for Heat Treatment of Aluminum Alloys,” Metal Science and Heat Treatment, Vol. 38, pp. 252-254, 1996.
11. G. E. Totten, C. E. Bates, and N. A. Clinton, Handbook of Quenchants and Quenching Technology, ASM International, Metals Park, OH, USA, 1993.
12. D. Mackenzie, “Heat Treating Aluminum for Aerospace Applications,” International Surface Engineering Congress - Proceedings of the 1st Congress, Vol. 5, pp. 617-626, 2003.
13. J. S. Robinson, D. A. Tanner, S. van Petegem, and A. Evans, “Influence of Quenching and Aging on Residual Stress in Al–Zn–Mg–Cu Alloy 7449,” Materials Science and Technology, Vol. 28, pp. 420-430, 2012.
14. P. Ulysse, “Thermo-Mechanical Characterization of Forged Coated Products During Water Quench,” Journal of Materials Processing Technology, Vol. 209, pp. 5584-5592, 2009.
15. P. Ulysse and R. W. Schultz, “The Effect of Coatings on the Thermo-Mechanical Response of Cylindrical Specimens During Quenching,” Journal of Materials Processing Technology, Vol. 204, pp. 39-47, 2008.
16. C. Lu, M. F. Yan, Y. X. Wang, C. S. Zhang, Y. Y. Zong, F. Y. Zhang, and H.Y. Fu, “Effect of the Multiphase Layer Produced on Surface of ZL205A Aluminum Alloy Thin-Wall Barrel on Quenching Deformation,” Surface and Coatings Technology, Vol. 372, pp. 319-326, 2019.
17. Light Metal Age, Arconic Starts Up Advanced Thick Plate Stretcher, https://www.lightmetalage.com/news/industry-news/flat-rolled-sheet/arconic-starts-advanced-thick-plate-stretcher/, accessed on February 22, 2022.
18. M. B. Prime and M. R. Hill, “Residual Stress, Stress Relief, and Inhomogeneity in Aluminum Plate,” Scripta Materialia, Vol. 46, pp. 77-82, 2002.
19. Q. C. Wang, Y. L. Ke, H. Y. Xing, Z. Y. Weng, and F. E. Yang, “Evaluation of Residual Stress Relief of Aluminum Alloy 7050 by Using Crack Compliance Method,” Transactions of Nonferrous Metals Society of China (English Edition), Vol. 13, pp. 1190-1193, 2003.
20. J. S. Robinson, P. J. Tiernan, and J. F. Kelleher, “Effect of Post-Quench Delay on Stress Relieving by Cold Compression for the Aluminium Alloy 7050,” Materials Science and Technology, Vol. 31, pp. 409-417, 2015.
21. R. Dawson and D. G. Moffat, “Vibratory Stress Relief: A Fundamental Study of Its Effectiveness,” Journal of Engineering Materials and Technology, Vol. 102, pp. 169-176, 1980.
22. C. A. Walker, A. J. Waddell, and D. J. Johnston, “Vibratory Stress Relief: an Investigation of the Underlying Processes,” Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, Vol. 209, pp. 51-58, 1995.
23. H. Gao, Y. Zhang, Q. Wu, J. Song, and K. Wen, “Fatigue Life of 7075-T651 Aluminium Alloy Treated with Vibratory Stress Relief,” International Journal of Fatigue, Vol. 108, pp. 62-67, 2018.
24. H. Gong, Y. Sun, Y. Liu, Y. Wu, Y. He, X. Sun, and M. Zhang, “Effect of Vibration Stress Relief on the Shape Stability of Aluminum Alloy 7075 Thin-Walled Parts,” Metals, Vol. 9, 2019.
25. L. Zhang, X. Feng, Z. Li, and C. Liu, “FEM Simulation and Experimental Study on the Quenching Residual Stress of Aluminum Alloy 2024,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 227, pp. 954-964, 2013.
26. D. A. Tanner and J. S. Robinson, “Residual Stress Prediction and Determination in 7010 Aluminum Alloy Forgings,” Experimental Mechanics, Vol. 40, pp. 75-82, 2000.
27. D. A. Tanner and J. S. Robinson, “Modelling Stress Reduction Techniques of Cold Compression and Stretching in Wrought Aluminium Alloy Products,” Finite Elements in Analysis and Design, Vol. 39, pp. 369-386, 2003.
28. M. Koç, J. Culp, and T. Altan, “Prediction of Residual Stresses in Quenched Aluminum Blocks and their Reduction through Cold Working Processes,” Journal of Materials Processing Technology, Vol. 174, pp. 342-354, 2006.
29. Y.-N. Li, Y.-A. Zhang, X.-W. Li, Z.-H. Li, G.-J. Wang, L.-B. Jin, S.-H. Huang, and B.-Q. Xiong, “Quenching Residual Stress Distributions in Aluminum Alloy Plates with Different Dimensions,” Rare Metals, Vol. 38, pp. 1051-1061, 2019.
30. K. Zhu, B. Xiong, X. Li, Y. Zhang, Z. Li, Y. Li, K. Wen, and L. Yan, “Finite Element Simulation on Residual Stress During Immersion Quenching and Pre-stretching of Al7055 Thick Plates,” Materials Research Express, Vol. 9, 026525, 2022.
31. H. Gong, Y. X. Wu, Z. P. Yang, and K. Liao, “Analysis of Quenching and Stretching Processes of Aluminum Alloy Thick Plates,” Advanced Materials Research, Vol. 996, pp. 532-537, 2014.
32. ScholarWorks, Comparison of High-Strength Aluminum Alloy 7055-T7751 and Standard Alloy 7075-T7651, https://scholarworks.calstate.edu/concern/theses/rv042z24r, accessed on August 1, 2022.
33. Y. N. Li, Y. A. Zhang, X. W. Li, Z. H. Li, G. J. Wang, H. W. Yan, L. B. Jin, and B. Q. Xiong, “Effects of Heat Transfer Coefficients on Quenching Residual Stresses in 7055 Aluminum Alloy,” Materials Science Forum, Vol. 877, pp. 647-654, 2016.
34. V. S. P. Sudula, “Multilinear Isotropic and Multilinear Kinematic Hardening on AZ31 Magnesium Alloy,” International Journal of Engineering and Advanced Technology, Vol. 10, pp. 259-268, 2021.
指導教授 林志光(Chih-Kuang Lin) 審核日期 2022-8-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明