博碩士論文 109323062 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:75 、訪客IP:3.142.156.67
姓名 李文碩(Li, Wen-Shuo)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以深冷電化學蝕刻法在矽晶表面形成微結構與光致發光光譜之研究
(Fabrication of Surface Microstructure and Photoluminescence of Cryogenic Electrochemical Etching Silicon)
相關論文
★ 塑膠機殼內部表面處理對電磁波干擾防護研究★ 研磨頭氣壓分配在化學機械研磨晶圓膜厚移除製程上之影響
★ 利用光導效應改善非接觸式電容位移感測器測厚儀之研究★ 石墨材料時變劣化微結構分析
★ 半導體黃光製程中六甲基二矽氮烷 之數量對顯影後圖型之影響★ 可程式控制器機構設計之流程研究
★ 伺服沖床運動曲線與金屬板材成型關聯性分析★ 鋁合金7003與630不銹鋼異質金屬雷射銲接研究
★ 應用銲針尺寸與線徑之推算進行銲線製程第二銲點參數優化與統一之研究★ 複合式類神經網路預測貨櫃船主機油耗
★ 熱力微照射製作絕緣層矽晶材料之研究★ 微波活化對被植入於矽中之氫離子之研究
★ 矽/石英晶圓鍵合之研究★ 奈米尺度薄膜轉移技術
★ 光能切離矽薄膜之研究★ 氮矽基鍵合之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究為使用氫氟酸:酒精比例1:1在兩組電流下超低溫電化學蝕刻P型重參矽晶圓,觀察低溫對表面微結構與表面奈米晶體尺寸的影響。並使用場發射掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、光致發光光譜儀(PL)做進一步分析。低溫下因水的解離率與反應速率降低導致矽之氟蝕刻與氫氧基蝕刻被降至很低,厄弗法則解釋蝕刻液的表面張力增加導致應力腐蝕,重參P型矽卻不會因溫度降低改變電導率,三種原因導致蝕刻出的矽晶表面多孔結構相較於常溫孔洞更淺並趨於球型,奈米晶體也因尺寸縮小致使光致發光光譜發生藍移現象。
相較於常見的化學氣相沉積法與電漿沉積法,低溫電化學蝕刻法有設備相對簡單、成本低廉等的優點,較適合大規模應用於生物標記與防偽辨識。
摘要(英) We adopt the cryogenic electrochemical method to etch heavily-doped p-type silicon wafer under two sets of current with the etchant that mix hydrofluoric acid and ethanol with 1:1 volume percentage, then observe the influence of low temperature to surface microstructure and size of surface nanocrystal using field-emission scanning electron microscope(SEM)、transmission electron microscope(TEM) and photoluminescence(PL). There are three reasons which make the surface porous structure more shallow and more spherical in deep cold environment: 1. The reaction rate and dissociation rate decrease lead to a low etch rate. 2. The surface tension increase lead to stress corrosion. 3. The conductivity of heavily-doped silicon remains almost the same in the cryogenic environment. The low temperature also causes blue shift in the PL, which can be attributed to the size decrease of nanoparticles of silicon.
In comparison with Chemical Vapor Deposition(CVD) and Plasma Synthesis, the cryogenic electrochemical etching has the advantage of simple equipment and inexpensive cost. That makes it suitable for biomarker and banknotes anti-counterfeiting.
關鍵字(中) ★ 電化學蝕刻
★ 光致發光
★ 深冷
★ 多孔矽
關鍵字(英) ★ electrochemical etching
★ photoluminescence
★ deep cold
★ porous silicon
論文目次 目錄
摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 x
第一章 緒論 1
1-1 研究背景 1
1-2 奈米矽晶製程 2
1-2-1 化學氣相沉積法(Chemical Vapor Deposition, CVD): 4
1-2-2 電漿沉積法(Plasma Synthesis): 4
1-2-3 電化學蝕刻法(Electrochemical Etching): 4
1-3 研究動機與目的 5
第二章 原理與文獻回顧 6
2-1 多孔矽理論模型 6
2-2 多孔矽形成機制 6
2-3 表面張力 11
2-4 溫度對蝕刻液的物理影響-厄弗法則(Eötvös law) 11
2-5 溫度對蝕刻液的化學影響 12
2-6 溫度對半導體內部的影響 13
第三章 實驗方法與步驟 16
3-1 試片與清洗流程 16
3-2 實驗器材 17
3-2-1 電化學實驗器材 17
3-2-2實驗分析檢測儀器 18
3-3 實驗步驟 19
第四章 結果與討論 21
4-1日光燈及UV燈下觀察結果 21
4-1-1 100mA電流結果 21
4-1-2 300mA電流結果 23
4-2 FE-SEM表面及剖面觀察結果 25
4-3 TEM觀察結果 34
4-4 多孔矽光激發光譜(Photoluminescence, PL) 35
4-4-1 PL波長變化 35
4-4-2 晶粒尺寸變化 44
第五章 結論 47
5-1 結果歸納 47
5-2 未來展望 47
第六章 參考文獻 48
參考文獻 [1] Uhlir Jr, A., "Electrolytic shaping of germanium and silicon", Bell System Technical Journal, Vol 35, pp. 333-347, 1956.
[2] Karbassian, Farshid., "Porous silicon" Porosity-Process, Technologies and Applications, IntechOpen, 2018.
[3] Canham, Leigh T., "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers", Applied physics letters, Vol 57, pp. 1046-1048, 1990.
[4] Lehmann, V., and Ulrich Gösele., "Porous silicon formation: A quantum wire effect", Applied Physics Letters, Vol 58, pp. 856-858, 1991.
[5] Edvinsson, Tomas., "Optical quantum confinement and photocatalytic properties in two-, one-and zero-dimensional nanostructures", Royal society open science, Vol 5, pp. 180387, 2018.
[6] Fondell, Mattis, et al., "Optical quantum confinement in low dimensional hematite", Journal of Materials Chemistry A, Vol 2, pp. 3352-3363, 2014.
[7] Zhang, Xinyue, and Yanzhong Pei., "Manipulation of charge transport in thermoelectrics." npj Quantum Materials, Vol2, pp. 1-5, 2017.
[8] Filtvedt, W. O., et al., "Chemical vapor deposition of silicon from silane: Review of growth mechanisms and modeling/scaleup of fluidized bed reactors", Solar energy materials and solar cells, Vol 107, pp. 188-200, 2012.
[9] Yasar-Inceoglu, Ozgul, et al., "Silicon nanocrystal production through non-thermal plasma synthesis: a comparative study between silicon tetrachloride and silane precursors", Nanotechnology, Vol 23, pp. 255604, 2012.
[10] Mangolini, L., E. Thimsen, and Uwe Kortshagen., "High-yield plasma synthesis of luminescent silicon nanocrystals", Nano letters, Vol 5, pp. 655-659, 2005.
[11] Trucks, G. W., et al., "Mechanism of HF etching of silicon surfaces: A theoretical understanding of hydrogen passivation", Physical review letters, Vol 65, pp. 504, 1990.
[12] Bae, Yoonjung, et al., "Electrochemistry and electrogenerated chemiluminescence of films of silicon nanoparticles in aqueous solution", Nanotechnology, Vol 17, pp. 3791, 2006.
[13] Ramizy, Asmiet, Z. Hassan, and Khalid Omar., "Porous silicon nanowires fabricated by electrochemical and laser-induced etching", Journal of Materials Science: Materials in Electronics, Vol 22, pp. 717-723, 2011.
[14] Adam, Tijani, et al., "Electrochemical etching: An ultrasonic enhance method of silicon nano porous fabrication", Wulfenia Journal, Vol 20, pp. 45-55, 2013.
[15] Menna, P., G. Di Francia, and V. La Ferrara., "Porous silicon in solar cells: a review and a description of its application as an AR coating", Solar Energy Materials and Solar Cells, Vol 37, pp. 13-24, 1995.
[16] Föll, Helmut, et al., "Formation and application of porous silicon", Materials Science and Engineering: R: Reports, Vol 39, pp. 93-141, 2002.
[17] Canham, Leigh., "Introductory lecture: origins and applications of efficient visible photoluminescence from silicon-based nanostructures", Faraday Discussions, Vol 222, pp. 10-81, 2020.
[18] Parkhutik, V., "Porous silicon—mechanisms of growth and applications", Solid-State Electronics, Vol 43, pp. 1121-1141, 1999.
[19] Zhang, Xiaoge Gregory., Electrochemistry of Silicon and its Oxide., Springer Science & Business Media, 2007.
[20] Unagami, Takashi., "Formation mechanism of porous silicon layer by anodization in HF solution", Journal of the electrochemical society, Vol 127, pp. 476, 1980.
[21] Matubayasi, Norihiro., Surface tension and related thermodynamic quantities of aqueous electrolyte solutions., CRC Press, 2019.
[22] Shereshefsky, J. L., "Surface tension of saturated vapors and the equation of Eötvös", The Journal of Physical Chemistry, Vol 35, pp. 1712-1720, 2002.
[23] Simons, J. H., and J. W. Bouknight., "The density and surface tension of liquid hydrogen fluoride", Journal of the American Chemical Society, Vol 54, pp. 129-135, 1932.
[24] He, Zheng‐Da, et al., "The Pre‐exponential Factor in Electrochemistry", Angewandte Chemie International Edition, Vol 57, pp. 7948-7956, 2018.
[25] MacQueen, J. T., "Some observations concerning the van′t Hoff equation", Journal of Chemical Education, Vol 44, pp. 755, 1967.
[26] Hook, J. R., and H. E. Hall., Solid State Physics, 1991.
[27] Jacoboni, Canali, et al., "A review of some charge transport properties of silicon", Solid-State Electronics, Vol 20, pp. 77-89, 1977.
[28] Morin, F. J., and J. P. Maita., "Electrical properties of silicon containing arsenic and boron", Physical Review, Vol 96, pp. 28, 1954.
[29] Spectral Colors, 2021/5/31, 取自: http://hyperphysics.phyastr.gsu.edu/hbase/vision/specol.html
[30] Ledoux, Gilles, et al., "Photoluminescence properties of silicon nanocrystals as a function of their size", Physical Review B, Vol 62, pp. 15942, 2000.
[31] Bludau, W., A. Onton, and W. Heinke., "Temperature dependence of the band gap of silicon", Journal of Applied Physics, Vol 45, pp. 1846-1848, 1974.
[32] Mooney, Jonathan, and Patanjali Kambhampati., "Get the basics right: Jacobian conversion of wavelength and energy scales for quantitative analysis of emission spectra", pp. 3316-3318, 2013.
指導教授 李天錫(Lee, Benjamin Tien-Hsi) 審核日期 2021-6-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明