博碩士論文 109323068 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.22.75.74
姓名 李柏衡(Po-Heng Lee)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 外部致動之微流體機電控制平台
(External actuated microfluidic electromechanical control platform)
相關論文
★ 微流體系統應用於機械力刺激人體膀胱癌細胞之研究★ 多重微流體晶片機械應力刺激細胞培養之研究
★ 藉由熱接合、表面改質與溶劑處理方法 封閉於環狀嵌段共聚物與環烯烴共聚物材料上 微流道之研究★ Development of A Label-Free Imaging Droplet Sorting System with Machine Learning-Support Vector Machine (SVM)
★ 複合式物理力的生物反應器自動化與控制設計★ 以微铣削進行高分子微流體裝置之製程整合
★ 奈米矽質譜晶片於質譜檢測之應用研究★ 矽奈米結構對於質譜離子化效率探討之研究
★ 微滾軋製程應用於高分子材料轉印微結構之研究★ 設計微流體晶片應用於人體胎盤幹細胞的物理/化學誘導分化之研究
★ 利用熱壓製造類多孔隙介質之 微流道模型研究★ 單晶矽材料電化學放電鑽孔及同軸電度之研究
★ 微流道中液滴成形及滴落現象之模擬分析★ 兆聲波輔助化學溶液清潔晶圓表面汙染顆粒研究
★ 真空加熱矽奈米結構晶片對於提升質譜檢測靈敏度與離子化機制探討與應用★ 應用磁性粒子於微流體裝置之可逆接合
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近代,微流體裝置逐漸廣泛地研究,不論是紙基微流體裝置、微流體晶片、生物反應器,皆朝著以外部致動件搭配自動化控制的方向邁進,而這些致動件也增加了其在主動式控制及相關領域上的應用,例如:紙基微流體裝置中以主動式控制的方式控制流體在濾紙上的流速、微流體晶片及生物反應器中影響細胞成長的外部物理刺激等等,因此本研究將嘗試依據不同微流體裝置的需求來開發外部致動之微流體平台。
在紙基微流體裝置中,目前許多裝置仍以被動式閥門控制作為主要流體傳輸控制的依據,卻捨棄控制流體在濾紙上流速的機會,在本論文第一部份中將嘗試結合紙基微流體裝置與自動化運作概念,並試著以主動式閥門控制的方式來解決以往裝置在做細胞培養或檢測時濾紙上液體流速無法控制的問題,同時藉由平台開發的概念來應用在不同孔徑的濾紙以達到多方應用的能力,並藉由實驗結果來評估未來紙基微流體平台的發展性。
有鑑於許多研究指出,外部物理刺激擁有促進細胞成長、分化的作用,例如:機械拉伸、電刺激、剪應力等,然而許多研究仍無法以多種外部物理刺激的方式對細胞刺激。本論文第二部分中將嘗試結合微流體晶片及生物反應器設計概念與優勢,進行外部致動之微流體機電控制平台的開發及製程設計。微流體晶片和生物反應器是體外細胞培養的裝置並作為代替動物實驗的仿生環境,但它們仍分別存在一些限制如:重複使用性、細胞脫附等問題。雖然生物反應器能解決上述問題,但當微觀設備近一步放大時,先前未顯現的問題也相對被放大如:漏氣、漏液、細胞外部刺激數將隨裝置設計而成為有限制的發展。同時,在多種生物實驗下,電路控制將是影響生物實驗結果的關鍵,也造成實驗者在裝置製備與控制方面受到一定程度的負擔。因此本論文將嘗試以聚甲基丙烯酸甲酯(PMMA)製作結合微流體晶片及生物反應器概念的生物晶片,並以已沉積聚吡咯(PPy)的聚二甲基矽氧烷(PDMS)薄膜作為細胞培養的依據,生物晶片設計會以固定深度微流道抽真空的方式對薄膜進行機械拉伸並放置導電裝置來對細胞電刺激,同時確保裝置對細胞的生物的相容性及影響性,最後將改良機電控制端以達到最佳化控制並將生物晶片整合應用於可升降式微流道(可調式機械拉伸量)的外部致動之微流體機電控制平台。
為了提高細胞分化率我們評估了細胞培養所需的空間,同時兼顧裝置的重複使用性及可拆卸性,最終將達到以外部致動的方式提供細胞外部刺激,透過7天的細胞培養,我們證明了細胞在裝置上透過多重刺激下增加了排列及分化結果,藉此開拓外部致動之微流體機電控制平台未來持續開發的可能性。
摘要(英) In recent year, the microfluidic devices have been widely developed. Whether the paper based microfluidic device, microfluidic chip or bioreactor, they are developed toward the direction of automatic control with external actuators. And these actuators are also increase their applications in active control. For example: in the paper-based microfluidic device, the active control of fluid flow rate on the filter paper. or external physical stimulation that affect the cells growth in the microfluidic chip and bioreactor, etc. Therefore, we target to develop an external actuated microfluidic platform according different microfluidic device.
In paper-based microfluidic devices, many devices still use passive valve control, but didn’t develop the active valve control to change the flow rate on the filter paper. In the first part of this thesis, we will combine the concepts of paper-based microfluidic devices and automated operation to design a microfluidic electromechanical control platform. And we use active control to solve the liquid transmission problem and promote the multiple drug testing needs in the future.
In many studies, external physical stimulation can promote cells growth and differentiation, such us mechanical stretching, electrical stimulation, shear stress, etc. However, they can’t affect cells by multi external physical stimulation in many researches. In second part of thesis, we combine the design concept and advantages of microfluidic chip and bioreactors, to develop and design the external actuated microfluidic electromechanical control platform. Microfluidic chip and bioreactor are in vitro cell culture device as a biomimic environment to replace animal experiments. Although microfluidic chip have some limitation of unreplaceable, reusability etc. Although the bioreactor can solve the problems, but the problems will happen while the device or equipment redesign to be bigger, such as air leakage, liquid leakage, development of external stimulations. At the same time, system control will be a crucial factor to affect the various biological experiments. It also causes operator spent more time to setup the device and control.
Therefore, we target use PMMA to fabricate a biochip and PPy-PDMS film for cell culture. the function of biochip will have mechanical stretching and electrical stimulation, and we will ensure the biochip biocompatibility for cells. Finally, we will improved the electromechanical control and integrated the biochip into an externally actuated microfluidic electromechanical control platform.
To promote cell differentiation rate, we evaluate the cells need to design the function and development of external actuated microfluidic electromechanical control platform that synchronous applied the electrical pulse and mechanical stimulation. By 7 days culture, we verify the cell increased the differentiation and alignment result by multi-stimulation. And develop the possibility of modular device in the future.
關鍵字(中) ★ 細胞培養
★ 機電控制
★ 微流體
★ 物理刺激
★ 外部致動
關鍵字(英) ★ cells culture
★ electromechanical control
★ microfluidic
★ physical stimulation
★ External actuated
論文目次 摘要 vi
Abstract viii
致謝 x
目錄 xi
第一部分-紙基微流體裝置 1
第一章 前言 1
1.1 研究動機 6
第二章 實驗方法與機構設計 8
2.1 Design and Experiment setup 8
2.1.1 實驗材料 8
2.1.2 機構設計 8
2.1.3 實驗方法 12
第三章 實驗結果與討論 15
第四章 結論 18
第二部分-生物反應器 19
第一章 前言 19
1.1 微流體技術背景 19
1.2 Microfluidic chip 21
1.3 生物反應器 22
1.4 研究動機 23
第二章 文獻回顧 25
2.1 機械致動元件 26
2.2 電壓脈衝刺激元件 28
第三章 實驗材料設備與方法 30
3.1 實驗材料與設備 30
3.2 生物反應晶片設計概念 31
3.2.1 薄膜設計 31
3.2.2 晶片設計 34
3.3 電壓脈衝刺激與訊號量測實驗材料及製程 37
3.3.1 電壓脈衝參數控制 38
3.3.2 電脈衝電場模擬 39
3.3.3 PPy/PDMS製程 39
3.3.4 電脈衝訊號量測 41
3.4 氣壓致動機械拉伸測試 42
3.5 外部致動之微流體機電控制平台 43
3.6 分化實驗 46
第四章 結果與討論 49
第五章 結論 62
參考文獻 63
參考文獻 1. Martinez, A.W., et al., Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angewandte Chemie-International Edition, 2007. 46(8): p. 1318-1320.
2. Dungchai, W., O. Chailapakul, and C.S. Henry, A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst, 2011. 136(1): p. 77-82.
3. Nishat, S., et al., Paper-based microfluidics: Simplified fabrication and assay methods. Sensors and Actuators B: Chemical, 2021. 336: p. 129681.
4. Toda, H., et al., Reversible Thermo-Responsive Valve for Microfluidic Paper-Based Analytical Devices. Micromachines, 2022. 13(5): p. 690.
5. Toley, B.J., et al., A versatile valving toolkit for automating fluidic operations in paper microfluidic devices. Lab on a Chip, 2015. 15(6): p. 1432-1444.
6. Fratzl, M., et al., Magnetic Two-Way Valves for Paper-Based Capillary-Driven Microfluidic Devices. Acs Omega, 2018. 3(2): p. 2049-2057.
7. He, P.J.W., et al., Engineering fluidic delays in paper-based devices using laser direct-writing. Lab on a Chip, 2015. 15(20): p. 4054-4061.
8. Martinez, A.W., et al., Programmable diagnostic devices made from paper and tape (vol 10, pg 2499, 2010). Lab on a Chip, 2010. 10(24): p. 3428-3428.
9. Dornelas, K.L., N. Dossi, and E. Piccin, A simple method for patterning poly(dimethylsiloxane) barriers in paper using contact-printing with low-cost rubber stamps. Analytica Chimica Acta, 2015. 858: p. 82-90.
10. Liu, H. and R.M. Crooks, Three-dimensional paper microfluidic devices assembled using the principles of origami. Journal of the American Chemical Society, 2011. 133 44: p. 17564-6.
11. Agarwal, T., et al., Paper-Based Cell Culture: Paving the Pathway for Liver Tissue Model Development on a Cellulose Paper Chip. ACS Applied Bio Materials, 2020. 3(7): p. 3956-3974.
12. Carrell, C., et al., Beyond the lateral flow assay: A review of paper-based microfluidics. Microelectronic Engineering, 2019. 206: p. 45-54.
13. Wang, C.-C., et al., A Paper-Based "Pop-up" Electrochemical Device for Analysis of Beta-Hydroxybutyrate. Analytical chemistry, 2016. 88(12): p. 6326-6333.
14. ter Schiphorst, J., et al., Light-responsive polymers for microfluidic applications. Lab on a Chip, 2018. 18(5): p. 699-709.
15. Hulme, S.E., S.S. Shevkoplyas, and G.M. Whitesides, Incorporation of prefabricated screw, pneumatic, and solenoid valves into microfluidic devices. Lab on a Chip, 2009. 9(1): p. 79-86.
16. Zheng, Y.Z., W. Dai, and H.K. Wu, A screw-actuated pneumatic valve for portable, disposable microfluidics. Lab on a Chip, 2009. 9(3): p. 469-472.
17. Weibel, D.B., et al., Torque-actuated valves for microfluidics. Analytical Chemistry, 2005. 77(15): p. 4726-4733.
18. 蘇裕昌, 上膠的基本理論及最近內部上膠技術的發展.
19. Organization, W.H. Cardiovascular diseases (CVDs). 2021.
20. Mathur, A., et al., In vitro cardiac tissue models: Current status and future prospects. Advanced Drug Delivery Reviews, 2016. 96: p. 203-213.
21. Kappler, B., et al., Investigating the physiology of normothermic ex vivo heart perfusion in an isolated slaughterhouse porcine model used for device testing and training. BMC Cardiovascular Disorders, 2019. 19(1): p. 254.
22. Paez-Mayorga, J., et al., Bioreactors for Cardiac Tissue Engineering. Adv Healthc Mater, 2019. 8(7): p. e1701504.
23. Abdelsayed, G., et al., 2D and 3D in-Vitro models for mimicking cardiac physiology. Applications in Engineering Science, 2022. 12: p. 100115.
24. Savoji, H., et al., Cardiovascular disease models: A game changing paradigm in drug discovery and screening. Biomaterials, 2019. 198: p. 3-26.
25. McDonald, J.C., et al., Fabrication of microfluidic systems in poly (dimethylsiloxane). ELECTROPHORESIS: An International Journal, 2000. 21(1): p. 27-40.
26. Rhee, S.W., et al., Patterned cell culture inside microfluidic devices. Lab on a Chip, 2005. 5(1): p. 102-107.
27. Hossain, M.M. and T. Rahman, Low Cost Micro Milling Machine for Prototyping Plastic Microfluidic Devices. Proceedings, 2018. 2(13): p. 707.
28. Yang, J.W., et al., Organ-on-a-Chip: Opportunities for Assessing the Toxicity of Particulate Matter. Frontiers in Bioengineering and Biotechnology, 2020. 8.
29. Huh, D., et al., Reconstituting organ-level lung functions on a chip. Science, 2010. 328(5986): p. 1662-8.
30. Kamei, K.-i., et al., Integrated heart/cancer on a chip to reproduce the side effects of anti-cancer drugs in vitro. RSC advances, 2017. 7(58): p. 36777-36786.
31. Ergir, E., et al., Small Force, Big Impact: Next Generation Organ-on-a-Chip Systems Incorporating Biomechanical Cues. Frontiers in Physiology, 2018. 9.
32. Mason, C. and P. Dunnill, A brief definition of regenerative medicine. 2008.
33. Canadas, R.F., et al., Bioreactors and Microfluidics for Osteochondral Interface Maturation. Adv Exp Med Biol, 2018. 1059: p. 395-420.
34. Bayir, E., et al., Bioreactors in tissue engineering: mimicking the microenvironment, in Biomaterials for Organ and Tissue Regeneration. 2020, Elsevier. p. 709-752.
35. Serena, E., et al., Electrical stimulation of human embryonic stem cells: Cardiac differentiation and the generation of reactive oxygen species. Experimental Cell Research, 2009. 315(20): p. 3611-3619.
36. Tseng, S.-J., et al., Studies of osteoblast-like MG-63 cellular proliferation and differentiation with cyclic stretching cell culture system on biomimetic hydrophilic layers modified polydimethylsiloxane substrate. Biochemical Engineering Journal, 2021. 168: p. 107946.
37. Nepagene. NST-140-XY Cell Stretching Systems;.
38. STREX. STB-190-XY Microscope Mountable Biaxial Stretching System.
39. Thompson, C.L., et al., Mechanical Stimulation: A Crucial Element of Organ-on-Chip Models (vol 8, 602646, 2020). Frontiers in Bioengineering and Biotechnology, 2021. 9.
40. Huh, D., et al., Microfabrication of human organs-on-chips. Nat Protoc, 2013. 8(11): p. 2135-57.
41. Stucki, J.D., et al., Medium throughput breathing human primary cell alveolus-on-chip model. Scientific Reports, 2018. 8(1): p. 14359.
42. Brown, T.D., Techniques for mechanical stimulation of cells in vitro: a review. Journal of Biomechanics, 2000. 33(1): p. 3-14.
43. Plunkett, N. and F.J. O′Brien, Bioreactors in tissue engineering. Technology and Health Care, 2011. 19(1): p. 55-69.
44. Smith, A.F., et al. Design and Development of a Robotic Bioreactor for In Vitro Tissue Engineering. in 2021 IEEE International Conference on Robotics and Automation (ICRA). 2021. IEEE.
45. Gérémie, L., et al., Evolution of a confluent gut epithelium under on-chip cyclic stretching. Physical Review Research, 2022. 4(2): p. 023032.
46. Sato, K., M. Nitta, and A. Ogawa, A Microfluidic Cell Stretch Device to Investigate the Effects of Stretching Stress on Artery Smooth Muscle Cell Proliferation in Pulmonary Arterial Hypertension. Inventions, 2019. 4(1): p. 1.
47. Thakral, G., et al., Electrical stimulation to accelerate wound healing. Diabetic foot & ankle, 2013. 4(1): p. 22081.
48. Manabe, Y., et al., Characterization of an acute muscle contraction model using cultured C2C12 myotubes. PloS one, 2012. 7(12): p. e52592.
49. Barash, Y., Electric Field Stimulation Integrated into Perfusion Bioreactor for Cardiac Tissue Engineering. Tissue Engineering Part C: Methods, 2010. 16(6): p. 1417-1426.
50. Mooney, E., et al., The electrical stimulation of carbon nanotubes to provide a cardiomimetic cue to MSCs. Biomaterials, 2012. 33(26): p. 6132-6139.
51. Hu, W.-W., et al., Electrical stimulation to promote osteogenesis using conductive polypyrrole films. Materials Science and Engineering: C, 2014. 37: p. 28-36.
52. Hu, W.-W., et al., The effects of substrate-mediated electrical stimulation on the promotion of osteogenic differentiation and its optimization. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2019. 107(5): p. 1607-1619.
53. Dong, H.-W., Multiplex physical stress bioreactor control and automation. 2020.
54. RC Charging Circuit. Available from: https://www.electronics-tutorials.ws/rc/rc_1.html.

指導教授 曹嘉文(Chia-Wen Tsao) 審核日期 2022-11-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明