博碩士論文 109323092 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:3.149.229.255
姓名 郭奕志(Yi-Zhi Guo)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 基於深度遷移學習之滾珠螺桿差別運轉條件預壓監測研究
相關論文
★ TFT-LCD前框卡勾設計之衝擊模擬分析與驗證研究★ TFT-LCD 導光板衝擊模擬分析及驗證研究
★ 數位機上盒掉落模擬分析及驗證研究★ 旋轉機械狀態監測-以傳動系統測試平台為例
★ 發射室空腔模態分析在噪音控制之應用暨結構聲輻射效能探討★ 時頻分析於機械動態訊號之應用
★ VKF階次追蹤之探討與應用★ 火箭發射多通道主動噪音控制暨三種線上鑑別方式
★ TFT-LCD衝擊模擬分析及驗證研究★ TFT-LCD掉落模擬分析及驗證研究
★ TFT-LCD螢幕掉落破壞分析驗證與包裝系統設計★ 主動式火箭發射噪音控制使用可變因子演算法
★ 醫學/動態訊號處理於ECG之應用★ 光碟機之動態研究與適應性尋軌誤差改善
★ 具新型菲涅爾透鏡之超音波微噴墨器分析與設計★ 醫用近紅外光光電量測系統之設計與驗証
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-11-15以後開放)
摘要(中) 滾珠螺桿作為精密機械及工具機的重要零組件,預壓狀態的監測極為重要,預壓失效及背隙產生影響定位精度。本研究目的在於提出小樣本數據擴增技術及深度遷移學習(Deep Transfer Learning)應用在滾珠螺桿預壓狀態監測方法,使用(Generative Adversarial Network, GAN)模型做數據擴增(Data augmentation),處理滾珠螺桿預壓數據不足問題;以深度遷移學習方法提升模型預測準確率,能夠在螺桿載台不同載重條件分類導螺桿預壓狀態。本論文分為四部分–(1)實驗規劃及數據收集:螺桿載台做等速往返運轉,收集30 kgw砝碼及負載螺桿模組兩種不同載重螺桿振動訊號,實驗設計4%、1%預壓及12 µm背隙共3種預壓狀態螺桿以建立判斷基準,其中30 kgw砝碼負載收集個別預壓狀態2500筆資料,負載螺桿模組則為500筆,分別作為源域(Source domain)及目標域(Target domain)數據;(2)振動訊號分析及探討:藉由頻譜及包絡譜分析,探討個別預壓狀態與螺桿振動之間關係,解析振動訊號特徵頻率及產生原因,當預壓衰退或背隙存在時,除滾珠振動造成的球通頻率(Ball pass frequency)外,另有多個邊頻分量,即螺桿運轉時,滾珠撞擊產生振幅調變現象;(3)數據擴增模型建立:探討所提出的GAN架構性能,以500筆30 kgw砝碼負載4%螺桿預壓訊號,訓練模型生成並建立數據集,以原始4%預壓振動訊號特徵建立人工模擬訊號,後分別以卷積神經網路(Convolutional Neural Network, CNN)、多層感知機(Multilayer Perceptron, MLP)與極限梯度提升(eXtreme Gradient Boosting, XGBoost)等三種分類模型比較模擬、生成訊號做數據擴增的模型準確率;(4)遷移學習模型建立及探討:提出域適應遷移方法解決新舊數據偏差問題,以CNN模型做為遷移對象微調並增加一適配層(Adaptation layer),計算兩分佈距離,比較多項式及高斯核函數對模型穩定度與準確率的影響,後使用數據降維方法驗證遷移模型的有效性。從結果得知,所提出GAN模型生成的數據未包含所有訊號特徵,而數據集混入GAN生成的數據擴增後模型準確率提升至99.5 %效果優異;所提出的域適應方法模型源域數據準確率達98.6 %,目標域準確率達94.7 %,可有效分類源域及目標域中螺桿預壓狀態。
摘要(英) As an important component of precision machines and machin tools, it is important to monitor the preloads of ball screws, and its preload degradation or backlash exists will affect the positioning accuracy. In order to address this issue, This study propose a small sample size augmentation technique and Deep Transfer Learning (DTL) method for ball screw preload condition monitoring, the Generative Adversarial Network (GAN) model to deal with ball screw preload data shortage problem, a deep learning-based domain adaptation method to improve the pre-training model accuracy for different loading conditions of the ball screw feeding system. The scope of this study is divided into four parts–(1) Experimental planning and data collection: The ball screw feeding system is operated at constant speed, and the vibration signals of two different load are collected(30 kgw weight and ball screw load module)for three types of preload states (4%, 1% preload and 12 µm backlash), the 30 kgw weight load collects 2500 data for individual preload states and ball screw load module collects 500 data, as source domain and target domain data respectively; (2) Analysis of vibration signals: The relationship between individual preload states and ball screw vibration was investigated by spectrum and envelope analysis, analyze the characteristic frequencies and causes of vibration signals,when the preload degradation or backlash exists, in addition to the ball pass frequency caused by ball impact there are several sideband components, i.e., the amplitude modulation phenomenon caused by ball impact when the ball screw is running; (3) Data augmentation model building: To investigate the performance of the GAN framework, the model is trained using 500 datas the 30 kgw weights load of 4% ball screw preload vibration signal,and created the generated dataset.We find original the 30 kgw weights load of 4% preload vibration signal features and used to create artificial simulated signals, and then three classification models were used to compare the performance of the data augmentation method ,These models are Convolutional Neural Network (CNN), Multilayer Perceptron (MLP) and eXtreme Gradient Boosting (XGBoost); (4) Deep transfer learning model building: Propose a domain adaptation transfer method to solve the problem of old and new data bias, use the CNN model as the transfer object to fine-tune and add an adaptation layer, calculate the distance between two distributions. Compare the effects of polynomial and Gaussian kernel functions on the stability and accuracy of the model, and then the validity of the transfer learning model is verified by using the dimension reduction method. From the results, the data generated by the proposed GAN model does not contain all signal features. However, the accuracy of the model is improved to 99.5% after the dataset be augmented by blending the generated data; the accuracy of the domain adaptation method reaches 98.6% for source domain and 94.7% for target domain, which can effectively classify the ball screw preload states in the source and target domains.
關鍵字(中) ★ 生成對抗網路
★ 深度遷移學習
★ 域適應
★ 滾珠螺桿
★ 球通頻率
★ 預壓力
關鍵字(英) ★ Generative Adversarial Network
★ Deep Transfer Learning
★ Domain Adaptation
★ Ball Screw
★ Ball Pass Frequency
★ Preload
論文目次 摘 要 i
Abstract ii
致謝 iv
目錄 viii
圖目錄 xi
表目錄 xv
符號說明 xvi
第一章 緒論 1
1-1 研究動機與目的 1
1-2 文獻回顧 2
1-3 研究範疇與章節內容 8
第二章 滾珠螺桿運動學與訊號分析 9
2-1 滾珠螺桿預壓理論 9
2-2 滾珠螺桿運動學 10
2-2-1 滾珠運動行為 10
2-2-2 球通頻率與預壓力 12
2-3 數據前處理 13
2-3-1 數位濾波 13
2-3-2 正規化 15
2-4 時、頻域分析 16
2-4-1 動態時間歸整 16
2-4-2 頻域分析 17
2-4-3 包絡譜分析 18
第三章 深度學習 20
3-1 深度學習 20
3-1-1 深度卷積神經網路 21
3-1-2 長短期記憶網路 23
3-2 生成對抗網路 25
3-2-1 演算法機制 25
3-2-2 Wasserstein距離 28
3-2-3 梯度懲罰 29
3-3 遷移學習 30
3-3-1 源域與目標域 30
3-3-2 最大均值差異與域適應 31
3-3-3 核技巧及核函數 32
3-3-4 多核最大化均質差異 34
3-4 數據降維 35
3-4-1 主成分分析 35
3-4-2 t-隨機鄰近嵌入法 36
第四章 實驗平台與訊號分析 38
4-1 實驗平台 38
4-1-1 滾珠螺桿測試載台 40
4-1-2 馬達控制 41
4-1-3 資料擷取 42
4-2 實驗模式與訊號分析 43
4-2-1 實驗設計 43
4-2-2 特徵訊號分析 45
4-2-3 數據前處理 51
第五章 小樣本數據生成與遷移模型建立 53
5-1 生成對抗模型訓練 54
5-1-1 模型建立 55
5-1-2 結果及討論 57
5-2 數據擴增與分類模型驗證 61
5-2-1 模擬訊號製作 61
5-2-2 數據分集與模型選擇 64
5-2-3 模型準確率比較 67
5-3 深度遷移學習 74
5-3-1 數據分析與分集 74
5-3-2 模型凍結、微調 75
5-3-3 核函數比較 78
5-3-4 域適應模型性能分析及驗證 82
5-3-5 參數/模型遷移方法性能分析 84
第六章 結論與未來展望 89
6-1 結論 89
6-2 未來展望 91
參考文獻 92
附錄A 不同負載及預壓狀態螺桿振動分析 98
附錄B 模型層凍結、微調方法比較 102
附錄C 滾珠螺桿出廠檢驗報告 104

參考文獻 [1] R. S. Peres, A. D. Rocha, P. Leitao, and J. Barata, "IDARTS–Towards intelligent data analysis and real-time supervision for industry 4.0," Computers in industry, vol. 101, pp. 138-146, 2018.
[2] G. A. Susto and A. Beghi, "Dealing with time-series data in predictive maintenance problems," in 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1-4, 2016.
[3] G. A. Susto, A. Beghi, and C. De Luca, "A predictive maintenance system for epitaxy processes based on filtering and prediction techniques," IEEE Transactions on Semiconductor Manufacturing, vol. 25, no. 4, pp. 638-649, 2012.
[4] G. A. Susto, S. McLoone, D. Pagano, A. Schirru, S. Pampuri, and A. Beghi, "Prediction of integral type failures in semiconductor manufacturing through classification methods," in 2013 IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA), pp. 1-4, 2013.
[5] G. A. Susto, A. Schirru, S. Pampuri, S. McLoone, and A. Beghi, "Machine learning for predictive maintenance: A multiple classifier approach," IEEE transactions on industrial informatics, vol. 11, no. 3, pp. 812-820, 2014.
[6] T. P. Carvalho, F. A. Soares, R. Vita, R. d. P. Francisco, J. P. Basto, and S. G. Alcalá, "A systematic literature review of machine learning methods applied to predictive maintenance," Computers & Industrial Engineering, vol. 137, Paper No.106024, 2019.
[7] M. Baptista, S. Sankararaman, I. P. de Medeiros, C. Nascimento Jr, H. Prendinger, and E. M. Henriques, "Forecasting fault events for predictive maintenance using data-driven techniques and ARMA modeling," Computers & Industrial Engineering, vol. 115, pp. 41-53, 2018.
[8] R. G. V. Machado and H. de Oliveira Mota, "Simple self-scalable grid classifier for signal denoising in digital processing systems," in 2015 IEEE 25th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1-6, 2015.
[9] G. K. Durbhaka and B. Selvaraj, "Predictive maintenance for wind turbine diagnostics using vibration signal analysis based on collaborative recommendation approach," in 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1839-1842, 2016.
[10] N. Vafaei, R. A. Ribeiro, and L. M. Camarinha-Matos, "Fuzzy early warning systems for condition based maintenance," Computers & Industrial Engineering, vol. 128, pp. 736-746, 2019.
[11] M. Azamfar, X. Li, and J. Lee, "Intelligent ball screw fault diagnosis using a deep domain adaptation methodology," Mechanism and Machine Theory, vol. 151, Paper No. 103932, 2020.
[12] J.-L. Chang, J.-A. Chao, Y.-C. Huang, and J.-S. Chen, "Prognostic experiment for ball screw preload loss of machine tool through the hilbert-huang transform and multiscale entropy method," in The 2010 IEEE International Conference on Information and Automation, pp. 376-380, 2010.
[13] G.-H. Feng and Y.-L. Pan, "Establishing a cost-effective sensing system and signal processing method to diagnose preload levels of ball screws," Mechanical Systems and Signal Processing, vol. 28, pp. 78-88, 2012.
[14] W. Jin, Y. Chen, and J. Lee, "Methodology for ball screw component health assessment and failure analysis," in International Manufacturing Science and Engineering Conference, vol. 55461, p. V002T02A031, 2013.
[15] J. Kozerawski and M. Turk, "Clear: Cumulative learning for one-shot one-class image recognition," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3446-3455, 2018.
[16] H. Qi, M. Brown, and D. G. Lowe, "Low-shot learning with imprinted weights," in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5822-5830, 2018.
[17] Y. Zhang, H. Tang, and K. Jia, "Fine-grained visual categorization using meta-learning optimization with sample selection of auxiliary data," in Proceedings of the european conference on computer vision (ECCV), pp. 233-248, 2018.
[18] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, "Generalizing from a few examples: A survey on few-shot learning," ACM computing surveys (csur), vol. 53, no. 3, pp. 1-34, 2020.
[19] L. Bottou, F. E. Curtis, and J. Nocedal, "Optimization methods for large-scale machine learning," Review, vol. 60, no. 2, pp. 223-311, 2018.
[20] L. Bottou and O. Bousquet, "The tradeoffs of large scale learning," Advances in neural information processing systems, vol. 20, 2007.
[21] I. Goodfellow et al., "Generative adversarial networks," Communications of the ACM, vol. 63, no. 11, pp. 139-144, 2020.
[22] A. Radford, L. Metz, and S. Chintala, "Unsupervised representation learning with deep convolutional generative adversarial networks," arXiv preprint arXiv:1511.06434, 2015.
[23] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, "Improved techniques for training gans," Advances in neural information processing systems, vol. 29, 2016.
[24] M. Mirza and S. Osindero, "Conditional generative adversarial nets," arXiv preprint arXiv:1411.1784, 2014.
[25] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, "Unpaired image-to-image translation using cycle-consistent adversarial networks," in Proceedings of the IEEE international conference on computer vision, pp. 2223-2232, 2017.

[26] M. Frid-Adar, I. Diamant, E. Klang, M. Amitai, J. Goldberger, and H. Greenspan, "GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification," Neurocomputing, vol. 321, pp. 321-331, 2018.
[27] C.-C. Lai, T.-P. Shih, W.-C. Ko, H.-J. Tang, and P.-R. Hsueh, "Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges," International journal of antimicrobial agents, vol. 55, no. 3, Paper No.105924, 2020.
[28] T. Singhal, "A review of coronavirus disease-2019 (COVID-19)," The indian journal of pediatrics, vol. 87, no. 4, pp. 281-286, 2020.
[29] M. Loey, F. Smarandache, and N. E. M Khalifa, "Within the lack of chest COVID-19 X-ray dataset: a novel detection model based on GAN and deep transfer learning," Symmetry, vol. 12, no. 4, p. 651-670, 2020.
[30] O. Mogren, "C-RNN-GAN: Continuous recurrent neural networks with adversarial training," arXiv preprint arXiv:1611.09904, 2016.
[31] J. Yoon, D. Jarrett, and M. Van der Schaar, "Time-series generative adversarial networks," Advances in Neural Information Processing Systems, vol. 32, 2019.
[32] S. J. Pan and Q. Yang, "A survey on transfer learning," IEEE Transactions on knowledge and data engineering, vol. 22, no. 10, pp. 1345-1359, 2009.
[33] H. Daume III and D. Marcu, "Domain adaptation for statistical classifiers," Journal of artificial Intelligence research, vol. 26, pp. 101-126, 2006.
[34] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng, "Self-taught learning: transfer learning from unlabeled data," in Proceedings of the 24th international conference on Machine learning, pp. 759-766, 2007.
[35] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, "A Survey on Deep Transfer Learning," in Artificial Neural Networks and Machine Learning – ICANN 2018, Cham, V. Kůrková, Y. Manolopoulos, B. Hammer, L. Iliadis, and I. Maglogiannis, Eds., pp. 270-279, 2018.
[36] S. J. Pan, J. T. Kwok, and Q. Yang, "Transfer learning via dimensionality reduction," in AAAI, vol. 8, pp. 677-682, 2008.
[37] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, "Domain adaptation via transfer component analysis," IEEE transactions on neural networks, vol. 22, no. 2, pp. 199-210, 2010.
[38] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," Advances in neural information processing systems, vol. 25, pp. 1097-1105, 2012.
[39] M. Long, Y. Cao, J. Wang, and M. Jordan, "Learning transferable features with deep adaptation networks," in International conference on machine learning, pp. 97-105, 2015.
[40] M. Long, H. Zhu, J. Wang, and M. I. Jordan, "Deep transfer learning with joint adaptation networks," in International conference on machine learning, pp. 2208-2217, 2017.
[41] K. Crammer, M. Kearns, and J. Wortman, "Learning from Multiple Sources," Journal of Machine Learning Research, vol. 9, no. 8, 2008.
[42] H. Zhao, S. Zhang, G. Wu, J. M. Moura, J. P. Costeira, and G. J. Gordon, "Adversarial multiple source domain adaptation," Advances in neural information processing systems, vol. 31, 2018.
[43] R. Xu, Z. Chen, W. Zuo, J. Yan, and L. Lin, "Deep cocktail network: Multi-source unsupervised domain adaptation with category shift," in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3964-3973, 2018.
[44] S. Shao, S. McAleer, R. Yan, and P. Baldi, "Highly accurate machine fault diagnosis using deep transfer learning," IEEE Transactions on Industrial Informatics, vol. 15, no. 4, pp. 2446-2455, 2018.
[45] L. Guo, Y. Lei, S. Xing, T. Yan, and N. Li, "Deep convolutional transfer learning network: A new method for intelligent fault diagnosis of machines with unlabeled data," IEEE Transactions on Industrial Electronics, vol. 66, no. 9, pp. 7316-7325, 2018.
[46] C. Sun, M. Ma, Z. Zhao, S. Tian, R. Yan, and X. Chen, "Deep transfer learning based on sparse autoencoder for remaining useful life prediction of tool in manufacturing," IEEE Transactions on Industrial Informatics, vol. 15, no. 4, pp. 2416-2425, 2018.
[47] Y. Pan, F. Mei, H. Miao, J. Zheng, K. Zhu, and H. Sha, "An approach for HVCB mechanical fault diagnosis based on a deep belief network and a transfer learning strategy," Journal of Electrical Engineering & Technology, vol. 14, no. 1, pp. 407-419, 2019.
[48] S. Shao, P. Wang, and R. Yan, "Generative adversarial networks for data augmentation in machine fault diagnosis," Computers in Industry, vol. 106, pp. 85-93, 2019.
[49] V. Pandhare, X. Li, M. Miller, X. Jia, and J. Lee, "Intelligent Diagnostics for Ball Screw Fault Through Indirect Sensing Using Deep Domain Adaptation," IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1-11, 2020.
[50] Ballscrew / Linear Guidway / Mono Stage General Catalog, PMI Linear Motion Systems, 2021.
[51] J.-P. Hung, J. S.-S. Wu, and J. Y. Chiu, "Impact failure analysis of re-circulating mechanism in ball screw," Engineering Failure Analysis, vol. 11, no. 4, pp. 561-573, 2004.
[52] 魏進忠,「單螺帽雙圈滾珠螺桿在預負荷及潤滑作用條件下運動機制與機械性能的理論分析及實驗印證」,博士論文,國立成功大學機械工程研究所,2003。
[53] C. C. Wei and J. F. Lin, "Kinematic analysis of the ball screw mechanism considering variable contact angles and elastic deformations," J. Mech. Des., vol. 125, no. 4, pp. 717-733, 2003.
[54] P. Tsai, C. Cheng, and Y. Hwang, "Ball screw preload loss detection using ball pass frequency," Mechanical Systems and Signal Processing, vol. 48, no. 1-2, pp. 77-91, 2014.
[55] V. Alan, W. Ronald, and J. Buck, "Discrete-time signal processing: Prentic e Hall," ed: Inc, 1989.
[56] M. Müller, "Dynamic time warping," Information retrieval for music and motion, pp. 69-84, 2007.
[57] J. W. Cooley and J. W. Tukey, "An algorithm for the machine calculation of complex Fourier series," Mathematics of Computation, vol. 19, pp. 297-301, 1965.
[58] 曹文昌,「適當本質模態函數篩選應用於滾珠軸承故障診斷」,博士論文,國立中央大學機械工程研究所,2013。
[59] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning,MIT press, 2016
[60] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, no. 7553, pp. 436-444, 2015.
[61] F. Chollet, Deep learning with Python,Simon and Schuster, 2021
[62] V. Zocca, G. Spacagna, D. Slater, and P. Roelants, Python deep learning,Packt Publishing Ltd, 2017
[63] H. Xiao, K. Rasul, and R. Vollgraf, "Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms," arXiv preprint arXiv:1708.07747, 2017.
[64] J. J. Lu and L. Martínez, "International Journal of Computational Intelligence Systems," Mathware & soft computing, vol. 18, no. 1, pp. 55-55, 2011.
[65] M. G. Ragab et al., "A novel one-dimensional cnn with exponential adaptive gradients for air pollution index prediction," Sustainability, vol. 12, no. 23, p. 10090, 2020.
[66] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural computation, vol. 9, no. 8, pp. 1735-1780, 1997.
[67] M. Arjovsky, S. Chintala, and L. Bottou, "Wasserstein generative adversarial networks," in International conference on machine learning, pp. 214-223, 2017.
[68] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, "Improved training of wasserstein gans," Advances in neural information processing systems, vol. 30, 2017.
[69] Q. Jin, R. Lin, and F. Yang, "E-WACGAN: enhanced generative model of signaling data based on WGAN-GP and ACGAN," IEEE Systems Journal, vol. 14, no. 3, pp. 3289-3300, 2019.
[70] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola, "A kernel two-sample test," The Journal of Machine Learning Research, vol. 13, no. 1, pp. 723-773, 2012.
[71] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, "A survey on deep transfer learning," in International conference on artificial neural networks, pp. 270-279, 2018.
[72] A. Tharwat, "Parameter investigation of support vector machine classifier with kernel functions," Knowledge and Information Systems, vol. 61, no. 3, pp. 1269-1302, 2019.
[73] C. Guo and H. Zhao, "Community structure discovery method based on the Gaussian kernel similarity matrix," Physica A: Statistical Mechanics and its Applications, vol. 391, no. 6, pp. 2268-2278, 2012.
[74] A. Gretton et al., "Optimal kernel choice for large-scale two-sample tests," in Advances in neural information processing systems, pp. 1205-1213, 2012.
[75] M. Köppen, "The curse of dimensionality," in 5th online world conference on soft computing in industrial applications (WSC5), vol. 1, pp. 4-8, 2000.
[76] M. Verleysen and D. François, "The curse of dimensionality in data mining and time series prediction," in International work-conference on artificial neural networks, pp. 758-770, 2005.
[77] K. Pearson, "Principal components analysis," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 6, no. 2, p. 559, 1901.
[78] H. Hotelling, "Analysis of a complex of statistical variables into principal components," Journal of educational psychology, vol. 24, no. 6, p. 417, 1933.
[79] L. Van der Maaten and G. Hinton, "Visualizing data using t-SNE," Journal of machine learning research, vol. 9, no. 11, 2008.
[80] 蔡政良,「基於二維動態訊號分析技術之滾珠螺桿預壓失效監測暨診斷研究」,碩士論文,國立中央大學機械工程學系,2022。
[81] 陳皓庭,「產線整合監測系統暨資訊串流功能開發研究」,碩士論文,國立中央大學光機電工程研究所,2020。
[82] S. Kotsiantis, D. Kanellopoulos, and P. Pintelas, "Handling imbalanced datasets: A review," GESTS international transactions on computer science and engineering, vol. 30, no. 1, pp. 25-36, 2006.
[83] C. Lemnaru and R. Potolea, "Imbalanced classification problems: systematic study, issues and best practices," in International Conference on Enterprise Information Systems, pp. 35-50, 2011.
[84] P. Wang and M. Vindiola, "Data augmentation for blind signal classification," in MILCOM 2019-2019 IEEE Military Communications Conference (MILCOM), pp. 305-310, 2019.
[85] A. Srivastava, L. Valkov, C. Russell, M. U. Gutmann, and C. Sutton, "Veegan: Reducing mode collapse in gans using implicit variational learning," Advances in neural information processing systems, vol. 30, 2017.
[86] A. Pinkus, "Approximation theory of the MLP model in neural networks," Acta numerica, vol. 8, pp. 143-195, 1999.
[87] T. Chen and C. Guestrin, "Xgboost: A scalable tree boosting system," in Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785-794, 2016.
[88] B. Neyshabur, H. Sedghi, and C. Zhang, "What is being transferred in transfer learning?," Advances in neural information processing systems, vol. 33, pp. 512-523, 2020.
[89] 邱竣卿,「Gabor時頻與階次分析之探討暨工程應用」,碩士,國立中央大學機械工程研究所,2003。
[90] M.-C. Pan, "Nonstationary Time-Frequency Analysis for Condition Monitoring of Mechanical Systems," Doctoral Thesis of Katholieke Universiteit Leuven, 1996.
指導教授 潘敏俊(Min-Chun Pan) 審核日期 2022-11-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明