博碩士論文 109323101 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:18.217.128.108
姓名 王玟心(Wen-Hsin Wang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱
(Design of a Spherical Reconfigurable Linkage for the Control of Mechanism Center of Rotation)
相關論文
★ 神經內視鏡的球面解耦機械手臂設計★ 新型機電整合之多色3-D列印機
★ Workspace Characterization of a 3-RRR Spherical Parallel Mechanism★ 對於遠程超聲波檢查機器人機械手控制裝置的設計
★ Formulation of a New Index for the Evaluation of Mechanism Workspace★ Kinematic Optimization of a Reconfigurable Spherical Parallel Mechanism for Robotic Assisted Craniotomy
★ Identification of Spherical Mechanism Parameter Errors using a Genetic Algorithm★ Kinematic Design of Double Pantographic Linkage for the Tele-Echography on Intra-Incubated Newborns
★ Design of a Five-Degrees of Freedom Statically Balanced Mechanism with Multi-Directional Functionality★ 應用於股骨復位手術中之機器人機構設計
★ Design of an Augmented Clamping Instrument for Advanced Aneurysm Surgery★ Contribution to the Design of a Robotic Platform for Liposuction
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 許多研究顯示,具有遠程運動中心(remote center of motion,RCM)之機構在微創手術或遠端 超音波技術等醫學應用中非常有效。進行上述醫學應用時,醫療裝置 或醫療器材通常繞著一點旋轉,該點稱為轉動中心(center of rotation,CoR)。前述兩例中,控制旋轉物件的轉動中心位置均有其必要性,無論是在進行醫學應用的過程中或作為預調皆是如此。然而,大部分具有遠程運動中心之機構無法將其末端效應器的轉動中心復位。把這些機構裝在作直線運動的平台上是解決問題的方法之一,但這個構想會大幅增加整體體積與重量。
本研究透過可重構機構提出更小巧、輕盈且或許更便宜之替代方案,即名為球面可重構連桿(spherical reconfigurable linkage,SRL)的新概念。傳統球面機構透過球面連桿的旋轉節點軸之交叉點來限制轉動中心。本研究提出的球面可重構連桿刻意在改變其半徑時仍維持其節點軸,使機構能夠自行將轉動中心復位,因而不需要額外的線性運動平台。
對球面可重構連桿作概念性定義後,本研究進行運動學分析以研究重構與轉動中心運動之間的關係。本研究設計並製作一具球面可重構連桿的原型,以測驗上述理論的可行性。本研究使用球面可重構連桿,設計擁有二角度自由度(degree of freedom,DoF)之球面並聯機構(spherical parallel mechanism,SPM),並將其以傳統方式裝設為球面五連桿。本研究改良此球面並聯機構,使其能用兩個額外的線性自由度使其能移動其旋轉中心。在定義結合球面可重構連桿所需之架構改良後,本研究對其運動學和速度模型進行研究。
摘要(英) Several studies have shown that mechanisms with Remote Center of Motion (RCM) are very useful for some medical applications, such as Minimally Invasive Surgery or tele-echography. In these applications, medical devices or instruments are being rotated around a point that is called the Center of Rotation (CoR). In both cases however, it is necessary to control the position of the CoR of the manipulated object, either during the process, or as a preliminary adjustment. But most RCM mechanism are unable to reposition the CoR of their end effector. A simple solution to this issue is to mount them on a platform that provides linear motions. However, this conceptual design suffers from a significant increase in volume and weight.
By the mean of reconfigurable mechanisms, the present study suggests a more compact, lighter and possibly cheaper alternative. In this regard, a new concept of Spherical Reconfigurable Linkage (SRL). Classical spherical architecture mechanisms rely on spherical linkages which are known for constraining the CoR by the intersection of their revolute joint axes. In the present concept, the SRL has been specifically imagined to change its radius while maintaining its joint axes, in order to reposition the mechanism CoR by themselves, thus suppressing the need for an additional linear platform.
Following the conceptual definition of the SRL, its kinematic analysis is provided to find the relationship between its reconfiguration and the resulting CoR motion. A prototype is then designed and fabricated to test the feasibility of such concept. Using the SRL, a Spherical Parallel Mechanism (SPM) with two angular Degree of Freedom (DoF), which is classically mounted as 5-bar Spherical Linkage is improved into a new mechanism capable of displacing its CoR with two additional linear DoF. After defining the architectural modification required for the integration of the SRL, its kinematic and velocity models are studied.
關鍵字(中) ★ 遠程運動中心
★ 球面並聯機構
★ 運動學分析
★ 可重構機構
★ 機械設計
關鍵字(英) ★ Remote Center of Motion
★ Spherical Parallel Mechanism
★ Kinematic Analysis
★ Reconfigurable Mechanism
★ Mechanical Design
論文目次 摘要 i
Abstract ii
Acknowledgments iii
Table of Content iv
List of Figures v
Explanation of Symbols vi
1 Introduction 1
1-1 Mechanisms with Remote Center of Motion 1
1-2 Mechanisms with Adjustable Center of Rotation 6
1-3 Potential Medical Applications 10
1-4 Objectives 12
2 Reconfigurable Spherical Linkage 14
2-1 Mechanical Concept 14
2-2 Reconfiguration Model 17
2-3 Kinematic Simulation 18
2-4 Mechanical Design and Testing 20
3 Application to a Spherical Parallel Mechanism 23
3-1 Mechanical Architecture improvement 23
3-2 Kinematics and Velocity of the Center of Rotation 25
3-3 Angular Kinematic of the Mechanism 28
3-4 Velocity Model of the Mechanism 31
4 Conclusion 34
Reference 35
參考文獻 [1] Ghodoussi, M., Butner, S.E., Wang, Y., “Robotic Surgery - The Transatlantic Case,” Proceedings of IEEE International Conference on Robotics and Automation, 2, pp. 1882–1888, Washington DC, USA, 2002.
[2] Sanchez, D., Black, M., Hammond, S., “A Pivot Point Arm for a Robotic System used to perform a Surgical Procedure,” European Patent No. 1254642, 2002.
[3] Kim, D., Kobayashi, E., Dohi, T., Sakuma, I., 2002, “A new compact MR-compatible surgical manipulator for minimally invasive liver surgery,” International Conference on Medical Image Computing and Computer-Assisted Intervention - MICCAI, Vol. 2488. Springer, pp. 99-106, Berlin, Heidelberg.
[4] Yip, H. M., Wang, Z., Navarro-Alarcon, D., Li, P., Liu, Y. H., Cheung, T. H. (2015, September), “A new robotic uterine positioner for laparoscopic hysterectomy with passive safety mechanisms: Design and experiments,” Proceeding of International Conference on Intelligent Robots and Systems, pp. 3188-3194, 2015.
[5] Kang, H., Wen, J.T., “Robotic assistants aid surgeons during minimally invasive procedures,” IEEE Engineering in Medicine and Biology Magazine, 20(1), pp. 94-104, 2001.
[6] Zong, G., Pei, V., Yu, J., Bi, S., 2008, “Classification and Type Synthesis of 1-DoF Remote Center of Motion Mechanisms,” Mechanism and Machine Theory, 43(12), pp. 1585-1595.
[7] Rosen, J., Brown, J.D., Chang, L., Barreca, M., Sinanan, M., Hannaford, B., “The BlueDRAGON - A System for Measuring the Kinematics and the Dynamics of Minimally Invasive Surgical Tools In-Vivo,” Proceedings of IEEE International Conference on Robotics and Automation, 2, pp. 1876-1881, Washington DC, USA, 2002.
[8] Davies, B., Starkie, S., Harris, S.J., Agterhuis, E., Paul, V., Auer, L.M., “Neurobot: A special-purpose robot for Neurosurgery,” Proceedings of IEEE International Conference on Robotics and Automation, 4, pp. 4103-4108, San Francisco, USA, 2000.
[9] Dai, X., Zhao, B., Zhao, S., He, Y., Sun, Y., Gao, P., Hu, Y., Zhang, J., “An Endoscope Holder with Automatic Tracking Feature for Nasal Surgery,” Proceedings of the IEEE International Conference on Information and Automation, pp. 1-6, Ningbo, China, 2016.
[10] Taghirad, H.D., “Parallel robot, mechanism and control,” International Standard Book Number: 978-1-4665-5576-1 (Hardback), 2012.
[11] Li, J., Zhang, G., Muller, A., Wang, S., “A Family of Remote Center of Motion Mechanisms Based on Intersecting Motion Planes,” ASME Journal of Mechanical Design, 135(9), 091009, 2013.
[12] Li, J., Xing, Y., Liang, K., Wang, S., “Kinematic Design of a Novel Spatial Remote Center-of-Motion Mechanism for Minimally Invasive Surgical Robot,” ASME Journal of Medical Devices, 9(1), 011003, 2015.
[13] Beira, R., Santos-Carreras, L., Rognini, G., Bleuler, H., Clavel, R., “Dionis: A novel remote-center-of-motion parallel manipulator for Minimally Invasive Surgery,” Applied Bionics and Biomechanics, 8(2), pp. 191–208, 2011.
[14] Zhang, X., Lehman, A., Nelson, C. A., Farritor, S. M., & Oleynikov, D., “Cooperative robotic assistant for laparoscopic surgery: CoBRASurge,” Proceeding of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5540-5545, 2009.
[15] Arbeille. P., Ayoub, J., Kieffer, V., Ruiz, P., Combes, B., Coitrieux, A., Herve, P., Garnier, S., Leportz, B., Lefbvre, E., Perrotin, F., “Realtime tele-operated abdominal and fetal echography in 4 medical centers from one expert center using a robotic arm & ISDN or satellite link,” Proceedings of IEEE International Conference on Automation Quality and Testing Robotics, 1, pp. 45-46, 2008.
[16] Laribi, M. A., Arsicault, M., Riviere, T., Zeghloul, S., “Toward new minimally invasive surgical robotic system,” Proceeding of IEEE International Conference on Industrial Technology, pp. 504-509, 2012.
[17] Gosselin, C., Hamel, J., “The Agile Eye: A High-Performance Three-Degree of Freedom Camera-Orienting Device,” Proceedings of IEEE International Conference on Robotics and Automation, pp. 781-786, San Diego, USA, 1994.
[18] Essomba, T., Laribi, M.A., Zeghloul, S. Poisson, G., “Optimal synthesis of a spherical parallel mechanism for medical application,” Robotica, Vol. 34(3), pp. 671-688, 2016.
[19] Stoianovici, D., Jun, C., Lim, S., Li, P., Petrisor, D., Fricke, S., Karun, S., Cleary, K., “Multi-imager compatible, MR safe, remote center of motion needle-guide robot,” IEEE Transactions on Biomedical Engineering, 65(1), 165-177, 2017.
[20] Üneri, A., Balicki, M.A., Handa, J., Gehlbach, P., Taylor, R.H., Iordachita, I., “New Steady-Hand Eye Robot with Micro-Force Sensing for Vitreoretinal Surgery”, IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 814-819, 2010.
[21] Guo, W., Li, R., Cao, C., Gao, Y., “Kinematics, dynamics, and control system of a new 5-degree-of-freedom hybrid robot manipulator,” Advances in Mechanical Engineering, 8(11), pp. 1-19, 2016.
[22] Ramrath, L., Hofmann, U.G., Schweikard, A., “Spherical Assistant for Stereotactic Surgery,” International Conference on Intelligent Robots and Systems, pp. 859-864, 2007.
[23] Harris, S.J., Arambula-Cosio, F., Mei, Q., Hibberd, R.D., Davies, B.L., Wickham, J.E.A., Nathan, M.S., Kundu, B., “The Probot—an active robot for prostate resection,” Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 211(4), pp. 317-325, 1997.
[24] Masamune, K., Kobayashi, E., Masutani, Y., Suzuki, M., Dohi, T., Iseki, H., Takakura, K., “Development of an MRI-Compatible Needle Insertion Manipulator for Stereotactic Neurosurgery,” Journal of Image Guided Surgery, 1(4), pp. 242-248, 1995.
[25] Taylor, R.H., Funda, J., Larose, D., Treat, M., “A telerobotic system for augmentation of endoscopic surgery,” Proceedings of IEEE Engineering in Medicine and Biology Society, 3, pp. 1054–1056, Paris, France, 1992.
[26] Salcudean, S.E., Zhu, W.H., Abolmaesumi, P., Bachmann, S., Lawrence, P.D., “A robot system for medical ultrasound,” Robotics Research – International Symposium, 9, pp.195-202, 2000.
[27] Delgorge, C., Courreges, F., Bassit, L., Novales, C., Rosenberger, C., Smith-Guerin, N., Bru, C., Gilabert, R., Vannoni, M., Poisson, G., Vieyres, P., “A Tele-Operated Mobile Ultrasound Scanner Using a Light-Weight Robot,” IEEE Transactions on Information Technology in Biomedicine, 9(1), pp. 50-58, 2005.
[28] Canero, C., Thomos, N., Triantafyllidis, G., Litos, G., Strintzis, M., “Mobile Tele-Echography: User Interface Design,” IEEE Transactions on Information Technology in Biomedicine, 9(1), pp. 44-49, 2005.
[29] Zinchenko, K., Wu, C.Y., Song, K.T., “A study on speech recognition control for a surgical robot,” IEEE Transactions on Industrial Informatics, 13(2), 607-615, 2016.
[30] Kuo, C.-H., Dai, J.S., Dasgupta, P., “Kinematic Design Considerations for Minimally Invasive Surgical Robots: An Overview,” International Journal of Medical Robotics and Computer Assisted Surgery, 8, 127-145, 2012.
[31] Lum, M.J., Rosen, J., Sinanan, M.N., Hannaford, B., “Optimization of a spherical mechanism for a minimally invasive surgical robot: theoretical and experimental approaches,” IEEE Transactions on Biomedical Engineering, 53(7), 1440-1445, 2006.
[32] Nouaille, L., Vieyres, P., Poisson, G., “Process of Optimization for a 4 DOF Tele-echography Robot,” Robotica, 30, pp. 1131-1145, 2012.
[33] Wu, C., Liu, X. J., Wang, L., & Wang, J., “Optimal design of spherical 5R parallel manipulators considering the motion/force transmissibility,” ASME Journal of Mechanical Design, 132(3), pp. 031002, 2010.
指導教授 伊泰龍(Térence Essomba) 審核日期 2022-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明