博碩士論文 109323113 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.144.111.149
姓名 張祖榮(CHANG-TSU-JUNG)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以微铣削進行高分子微流體裝置之製程整合
(Polymer microfluidic device fabrication)
相關論文
★ 微流體系統應用於機械力刺激人體膀胱癌細胞之研究★ 多重微流體晶片機械應力刺激細胞培養之研究
★ 藉由熱接合、表面改質與溶劑處理方法 封閉於環狀嵌段共聚物與環烯烴共聚物材料上 微流道之研究★ Development of A Label-Free Imaging Droplet Sorting System with Machine Learning-Support Vector Machine (SVM)
★ 複合式物理力的生物反應器自動化與控制設計★ 外部致動之微流體機電控制平台
★ 奈米矽質譜晶片於質譜檢測之應用研究★ 矽奈米結構對於質譜離子化效率探討之研究
★ 微滾軋製程應用於高分子材料轉印微結構之研究★ 設計微流體晶片應用於人體胎盤幹細胞的物理/化學誘導分化之研究
★ 利用熱壓製造類多孔隙介質之 微流道模型研究★ 單晶矽材料電化學放電鑽孔及同軸電度之研究
★ 微流道中液滴成形及滴落現象之模擬分析★ 兆聲波輔助化學溶液清潔晶圓表面汙染顆粒研究
★ 真空加熱矽奈米結構晶片對於提升質譜檢測靈敏度與離子化機制探討與應用★ 應用磁性粒子於微流體裝置之可逆接合
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文以高分子聚合物聚甲基丙烯酸甲酯(Poly Methyl Methacrylate ,
PMMA)作為微流體裝置的基材,以高精密五軸數控加工機(Computer
Numerical Control , CNC)進行微流體裝置的微铣削製程。工件在經過微铣削
加工後加工表面會有刀紋路及毛邊的產生,這對微流體裝置來說有一定的
影響,刀紋路會使表面粗糙度變差、毛邊在微流道內會造成改變液體流向
或氣泡的產生,故本文將會先針對微铣削高分子聚合物進行參數的調查,
了解加工參數對表面粗糙度及毛邊的影響,並將其進行優化以製造低表面
粗糙度及小毛邊大小的高品質之晶片。並且透過了解微铣削加工的加工極
限(加工機所能加工最小的間隔牆厚度與最深的加工深度、具有高長寬比的
微柱…等等方式),並利用五軸切削工具去創造與其他機台無法製作出的更
加微小尺度與複雜的圖形特徵。在 CNC 直接铣削製造微流道凹模最小的特
徵尺寸會受限於現有的刀具尺寸(刀直徑:寬度與刀長:深度),因此可以製造
出塑膠及金屬凸模用於 PDMS(Polydimethylsiloxane)的翻模或使用熱壓印法
去製造出直接铣削所無法加工的微流道圖形(流道尺寸小於刀徑、流道深度
高於刀長等…等),便能進行多樣化的晶片製作。
在後端的是封裝製程,因為目前尚無完美的熱塑性材料接合製程,每
種接合方法都各有其優缺,故依據每個微流道晶片的需求選擇其所適合的
接合方法,逐一呈現目前始能完成的不同裝置。因此在本論文中,除了探
討铣削參數對於毛刺及表面粗糙度的影響之外,再以製造凸模的方式對微
铣削的能力進行探討。最後再以依各流道設計及需求選用其適合的接合方
法。希望能提供一種以精密五軸 CNC 微铣削為前段製程的關鍵進行高精度
且微小複雜的特徵結構的加工並達到製造少量且多樣的微流體裝置。
摘要(英) In this study, Poly Methyl Methacrylate (PMMA) was used as the substrate
for microfluidic devices. and the micro-milling process of the microfluidic device
is carried out by a high-precision five-axis Computer Numerical Control (CNC)
machine. After the micro-milling , the surface will have milling traces and burrs.
which has a certain impact on microfluidic devices. The milling traces can
deteriorate the surface roughness, and the burrs in the microfluidic channel can
cause changes in the flow direction of the liquid or the formation of air bubbles.
Therefore, I investigate the parameters of micro-milled polymers first, and
understand the influence of processing parameters on surface roughness and
burrs. We try to optimized to produce high-quality chips with low surface
roughness and small burr size. By understanding the machining limits of micromilling processing,( The processing machine can process the smallest partition
wall thickness and the deepest processing depth、micropillar features with high
aspect ratios…) Use five-axis CNC to create smaller scales and complex graphic
features that cannot be produced with other equipment. In CNC direct milling to
manufacture microfluidic dies, the smallest feature size is limited by the existing
tool size .( milling cutter’s diameter :width、milling cutter’s length :depth)
Plastic and metal can be manufactured for inverted feature as micro-mold turning
PDMS or hot pressing to create microfluidic patterns that cannot be machined by
direct milling. Then can enables a variety of chip production.
At the back end is the bonding process, as there is no perfect thermoplastic
bonding process currently. Each bonding method has its own advantages and
disadvantages. According to the needs of each microfluidic chip, select its
suitable bonding method, and present the different devices that can be completed
iii
one by one. in this study, in addition to discussing the influence of milling
parameters on burrs and surface roughness, the ability of micro-milling is
discussed by manufacturing inverted feature as micro-mold. Finally, the suitable
bonding method is selected according to the design and needs of each microchannel. We hope to provide a precision five-axis CNC micro-milling as the key
to the front-end process, perform high-precision and micro-complex feature
structure processing, and achieve the manufacture of a small number and variety
of microfluidic devices.
關鍵字(中) ★ 微流道晶片/裝置
★ 微铣削製程
★ 熱塑性接合
關鍵字(英) ★ Microfluidic device
★ Micro-milling process
★ Thermoplastic bonding
論文目次 目錄
摘要....................................................................................................................................i
Abstract...........................................................................................................................ii
致謝.................................................................................................................................. iv
圖目錄............................................................................................................................. vii
第一章 前言...................................................................................................................1
1-1 微流體系統的基板演進及材料選擇 .......................................................................1
1-2 微流道的製程種類及選擇 ........................................................................................2
1-3 微铣削高分子微流道晶片 .......................................................................................4
1-3-1 微铣削製程 ....................................................................................................4
1-3-2 微铣削 ............................................................................................................5
1-3-3 五軸加工機及在微加工上的應用..................................................................8
1-4 高分子微流道晶片之接合 .....................................................................................10
1-4-1 直接接合法(Direct bonding) .........................................................................10
1-4-2 間接接合法(Indirect bonding).......................................................................11
1-5 研究動機..................................................................................................................12
第二章 實驗材料設備與方法.....................................................................................13
2-1 實驗設備與材料.......................................................................................................13
2-2 微流體裝置製造.......................................................................................................14
2-2-1 微铣削參數實驗............................................................................................15
2-2-2 铣削能力........................................................................................................16
2-3 量測方法...................................................................................................................18
2-3-1 粗糙度量測....................................................................................................18
2-3-2 顯微影像的量測............................................................................................19
2-4 微流道製造...............................................................................................................20
2-4-1 凹模及凸模的製造........................................................................................20
2-4-2 PDMS 翻模....................................................................................................22
第三章 結果與討論.....................................................................................................22
vi
3-1 微铣削加工參數的影響 ..........................................................................................22
3-1-1 加工參數對毛邊的影響................................................................................22
3-1-2 加工參數對表面粗糙度的影響....................................................................25
3-2 微流道晶片製造.......................................................................................................29
3-2-1 微流體晶片的微小特徵的微铣削................................................................29
3-2-1 直接铣削製造凹模........................................................................................30
3-2-2 製作凸模後再翻模製造................................................................................33
3-3 微流道接合實例.......................................................................................................34
3-3-1 直接接合........................................................................................................34
表面改質接合法 .....................................................................................................35
溶劑接合法 .............................................................................................................36
3-3-2 間接接合........................................................................................................37
微波接合法 .............................................................................................................37
第四章 結論.................................................................................................................38
Reference.........................................................................................................................38
參考文獻 Reference
1. McDonald, J.C., et al., Fabrication of microfluidic systems in poly (dimethylsiloxane).
39
2000. 21(1): p. 27-40.
2. Wlodarczyk, K.L., D.P. Hand, and M.M.J.S.r. Maroto-Valer, Maskless, rapid
manufacturing of glass microfluidic devices using a picosecond pulsed laser. 2019.
9(1): p. 1-13.
3. Microfluidics in Biotechnology. 2022: Advances in Biochemical
Engineering/Biotechnology Series, Vol. 179.
4. Tsao, C.-W.J.M., Polymer microfluidics: Simple, low-cost fabrication process bridging
academic lab research to commercialized production. 2016. 7(12): p. 225.
5. Zhang, H., et al., Precision replication of micro features using micro injection
moulding: Process simulation and validation. 2019. 177: p. 107829.
6. Konstantinou, D., et al., Combined hot embossing and milling for medium volume
production of thermoplastic microfluidic devices. 2016. 234: p. 209-221.
7. Çoğun, F., et al., Investigation on replication of microfluidic channels by hot
embossing. 2017. 32(16): p. 1838-1844.
8. Ravi-Kumar, S., et al., Laser ablation of polymers: A review. 2019. 68(8): p. 1391-1401.
9. Kim, J. and X.J.J.o.L.A. Xu, Excimer laser fabrication of polymer microfluidic devices.
2003. 15(4): p. 255-260.
10. Kuo, S.-C., Y.J.J.o.A.S. Chou, and Engineering, A novel polymer microneedle arrays and
PDMS micromolding technique. 2004. 7(2): p. 95-98.
11. Guckenberger, D.J., et al., Micromilling: a method for ultra-rapid prototyping of plastic
microfluidic devices. 2015. 15(11): p. 2364-2378.
12. Chen, P.-C., et al., An experimental study of micromilling parameters to manufacture
microchannels on a PMMA substrate. 2014. 71(9): p. 1623-1630.
13. Jin, X. and Y.J.J.o.M.P.T. Altintas, Prediction of micro-milling forces with finite element
method. 2012. 212(3): p. 542-552.
14. Aurich, J.C., et al., Surface quality in micro milling: Influences of spindle and cutting
parameters. 2017. 66(1): p. 101-104.
15. Wang, F., et al., Micromilling simulation for the hard-to-cut material. 2017. 174: p.
693-699.
16. Ghosh, R., et al. Cryogenic machining of polymeric biomaterials: An intraocular lens
case study. in Medical Device Materials IV: Proceedings of the Materials &Processes
for Medical Devices Conference 2007. 2008.
17. Balázs, B.Z., et al., A review on micro-milling: recent advances and future trends.
2021. 112(3): p. 655-684.
18. Zhang, X., et al., Cutting forces in micro-end-milling processes. 2016. 107: p. 21-40.
19. Vázquez, E., et al., An experimental analysis of process parameters to manufacture
metallic micro-channels by micro-milling. 2010. 51(9): p. 945-955.
20. Uhlmann, E., S. Piltz, and K.J.J.o.M.P.T. Schauer, Micro milling of sintered tungsten–
copper composite materials. 2005. 167(2-3): p. 402-407.
21. Jiao, F. and K.J.P.o.t.I.o.M.E. Cheng, Part B: Journal of Engineering Manufacture, An
experimental investigation on micro-milling of polymethyl methacrylate components
40
with nanometric surface roughness. 2014. 228(5): p. 790-796.
22. Saklakoglu, I.E. and S.J.T.I.J.o.A.M.T. Kasman, Investigation of micro-milling process
parameters for surface roughness and milling depth. 2011. 54(5): p. 567-578.
23. Miao, J., et al., Review of dynamic issues in micro-end-milling. 2007. 31(9): p. 897-
904.
24. Chen, L., et al., Burr formation and surface roughness characteristics in micro-milling
of microchannels. 2020. 111(5): p. 1277-1290.
25. Wilson, M.E., et al., Fabrication of circular microfluidic channels by combining
mechanical micromilling and soft lithography. Lab on a Chip, 2011. 11(8): p. 1550-
1555.
26. Ma, L.D., et al., Design and fabrication of a liver-on-a-chip platform for convenient,
highly efficient, and safe in situ perfusion culture of 3D hepatic spheroids. Lab on a
Chip, 2018. 18(17).
27. Giri, K. and C.-W.J.M. Tsao, Recent Advances in Thermoplastic Microfluidic Bonding.
2022. 13(3): p. 486.
28. Tsao, C., et al., Low temperature bonding of PMMA and COC microfluidic substrates
using UV/ozone surface treatment. 2007. 7(4): p. 499-505.
29. Ng, S.P., F.E. Wiria, and N.B.J.P.E. Tay, Low distortion solvent bonding of microfluidic
chips. 2016. 141: p. 130-137.
30. Saha, S., et al., An investigation on the top burr formation during Minimum Quantity
Lubrication (MQL) assisted micromilling of copper. 2020. 26: p. 1809-1814.
31. Chen, P.-C., et al., An experimental study of micromilling parameters to manufacture
microchannels on a PMMA substrate. The International Journal of Advanced
Manufacturing Technology, 2014. 71(9): p. 1623-1630.
指導教授 曹嘉文(Tsao, Chia-Wen) 審核日期 2023-2-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明