博碩士論文 109324009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.135.188.108
姓名 廖健宇(Jian-Yu Liao)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 高長寬比、規則有序矽單晶及鎳矽化物奈米尖錐陣列之製備及其場發射性質研究
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在本研究中,我們報導一種在室溫下透過聚苯乙烯奈米球微影術結合金屬輔助催化蝕刻法,成功在(001)矽單晶基材以一步驟、低成本、安全且快速的方式製備出大面積規則準直之矽單晶奈米錐陣列結構,透過調整蝕刻時間、氫氟酸、雙氧水及乙醇的濃度可以容易地控制矽晶奈米錐的高度及形貌,而高深寬比之矽晶奈米錐陣列具有超疏水性質,其水滴接觸角高於150°。接著,利用鎳金屬濺鍍沉積與高溫熱處理製備金屬鎳矽化物奈米錐結構。經由SEM、TEM與其相對應之電子選區繞射圖譜鑑定分析可證明所製備出之矽單晶奈米錐結構及NiSi2/Si磊晶奈米尖錐結構之形貌及其單晶結構並具備高度準直性。
由於NiSi2/Si磊晶奈米尖錐陣列的有序排列、鋒利尖端、單晶結構及低有效功函數,具有極低的啟動電場及優異的電子場發射特性。實驗結果展現出令人興奮的前景,提供了製備高效之尖錐狀矽化物基場發射電子元件的製程參考。
摘要(英) In this study, we reported a novel and room-temperature approach combining the polystyrene nanosphere lithography and metal-assisted chemical etching, and we successfully fabricate vertically-aligned, large-area and well-ordered silicon nanocone arrays on (001)Si substrate by the low cost, facile and one-step metal-assisted chemical process. The morphology and height of Si nanocones can be readily controlled by adjusting the concentrations of HF, H2O2, C2H5OH and the etching time. The obtained high-aspect-ratio Si nanocone arrays have superhydrophobic characteristics with water contact angle higher then 150°. Subsequently, the nickel silicide nanocone arrays were fabricated by sputter thin-film deposition and heat treatment processes. From SEM, TEM, SAED analysis indicated the silicon nanocone structure and NiSi2/Si nanocones are highly collimated and single crystalline.
The NiSi2/Si nanocone structure, owing to their highly-ordered arrangement, sharp tips, single-crystalline structure, and low effective work function, exhibit a very low turn-on field and excellent field-emission properties. The obtained results will present the exciting prospects that the new approach would offer potential applications in constructing well-ordered arrays of high-efficiency cone-like in silicide-based field emitters.
關鍵字(中) ★ 奈米球微影術
★ 金屬催化蝕刻
★ 鎳矽化物奈米尖錐結構
★ 電子場發射性質
關鍵字(英)
論文目次 目錄
第一章 前言及文獻回顧 1
1-1 前言 1
1-2 一維矽單晶奈米結構 2
1-2-1 一維矽單晶奈米線之應用及製備 2
1-2-2 一維矽單晶奈米錐之應用及製備 4
1-3 水滴接觸角之相關理論 5
1-4 場發射電子元件 7
1-4-1 電子場發射之理論研究 7
1-4-2 一維矽晶奈米結構應用於電子場發射之研究 8
1-5 金屬矽化物 9
1-5-1 金屬矽化物之製程與應用 9
1-5-2 鎳矽化物奈米線之製備及電子場發射性質 11
1-6 研究動機及目標 12
第二章 實驗步驟及實驗設備 14
2-1 規則有序且尺寸可調控之矽單晶奈米錐陣列結構 14
2-1-1 矽晶基材使用前處理 14
2-1-2 自組裝聚苯乙烯奈米球陣列模板製備 14
2-1-3 蒸鍍純金薄膜 15
2-1-4 金屬輔助催化蝕刻法製備矽單晶奈米錐陣列 15
2-2 規則有序且準直排列之鎳矽化物奈米錐陣列結構 15
2-2-1 濺鍍沉積鎳金屬薄膜 15
2-2-2 鎳矽奈米錐高溫熱退火處理 16
2-3 試片分析 16
2-3-1 掃描式電子顯微鏡 16
2-3-2 穿透式電子顯微鏡 17
2-3-3 影像式水滴接觸角量測儀 17
2-3-4 真空電子場發射性質量測系統 18
第三章 結果與討論 19
3-1 單層自主裝奈米球模板陣列製備 19
3-2 規則有序排列之矽單晶奈米錐陣列 21
3-3 規則有序排列之鎳矽化物奈米錐陣列 27
3-4 水滴接觸角量測分析 29
3-5 電子場發射性質量測分析 30
參考文獻 34
表目錄 42
圖目錄 43
參考文獻 [1] G. E. Moore, "Cramming more components onto integrated circuits," Electron. Mag. (1965) 4.
[2] D.M. Newman, M.L. Wears, M. Jollie, and D. Choo, "Fabrication and characterization of nano-particulate PtCo media for ultra-high density perpendicular magnetic recording," Nanotechnology. 18 (2007) 205301.
[3] K.-Q. Peng, X. Wang, X. Wu, and S.-T. Lee, "Fabrication and photovoltaic property of ordered macroporous silicon," Appl. Phys. Lett. 95 (2009) 143119.
[4] T. Søndergaard and S.I. Bozhevolnyi, "Metal nano-strip optical resonators," Opt. Express. 15 (2007) 4198.
[5] L. Gao, K. Zeng, J. Guo, C. Ge, J. Du, Y. Zhao, C. Chen, H. Deng, Y. He, H. Song, G. Niu, and J. Tang, "Passivated Single-Crystalline CH3NH3PbI3 Nanowire Photodetector with High Detectivity and Polarization Sensitivity," Nano Lett. 16 (2016) 7446.
[6] L. Hong, X. Wang, H. Zheng, L. He, H. Wang, H. Yu, and Rusli, "High efficiency silicon nanohole/organic heterojunction hybrid solar cell," Appl. Phys. Lett. 104 (2014) 053104.
[7] H.W. Kang, J. Yeo, J.O. Hwang, S. Hong, P. Lee, S.Y. Han, J.H. Lee, Y.S. Rho, S.O. Kim, S.H. Ko, and H.J. Sung, "Simple ZnO Nanowires Patterned Growth by Microcontact Printing for High Performance Field Emission Device," J. Phys. Chem. C. 115 (2011) 11435.
[8] X. Song, R. Hu, S. Xu, Z. Liu, J. Wang, Y. Shi, J. Xu, K. Chen, and L. Yu, "Highly Sensitive Ammonia Gas Detection at Room Temperature by Integratable Silicon Nanowire Field-Effect Sensors," ACS Appl. Mater. Interfaces. 13 (2021) 14377.
[9] A. Rokhlenko, K.L. Jensen, and J.L. Lebowitz, "Space charge effects in field emission: One dimensional theory," J. Appl. Phys. 107 (2010) 014904.
[10] S.R. Suryawanshi, S.S. Warule, S.S. Patil, K.R. Patil, and M.A. More, "Vapor-liquid-solid growth of one-dimensional tin sulfide (SnS) nanostructures with promising field emission behavior," ACS Appl. Mater. Interfaces. 6 (2014) 2018.
[11] Y.-J. Hung, S.-L. Lee, L.C. Beng, H.-C. Chang, Y.-J. Huang, K.-Y. Lee, and Y.-S. Huang, "Relaxing the electrostatic screening effect by patterning vertically-aligned silicon nanowire arrays into bundles for field emission application," Thin Solid Films. 556 (2014) 146.
[12] N.S. Xu and S.E. Huq, "Novel cold cathode materials and applications," Mater. Sci. Eng. R Rep. 48 (2005) 47.
[13] T. Zhai, L. Li, Y. Ma, M. Liao, X. Wang, X. Fang, J. Yao, Y. Bando, and D. Golberg, "One-dimensional inorganic nanostructures: synthesis, field-emission and photodetection," Chem. Soc. Rev. 40 (2011) 2986.
[14] S.S. Choi, M.Y. Jung, M.S. Joo, D.W. Kim, M.J. Park, S.B. Kim, and H.T. Jeon, "Field emission study of titanium silicide array," Surf. Interface Anal. 36 (2004) 435.
[15] S. Lv, Z. Li, J. Liao, Z. Zhang, and W. Miao, "Well-aligned NiSi/Si heterostructured nanowire arrays as field emitters," J. Vac. Sci. Technol. B:Nanotechnol. Microelectron. 33 (2015) 02B101.
[16] C.-Y. Lee, M.-P. Lu, K.-F. Liao, W.-F. Lee, C.-T. Huang, S.-Y. Chen, and L.-J. Chen, "Free-standing single-crystal NiSi2 nanowires with excellent electrical transport and field emission properties," J. Phys. Chem. C . 113 (2009) 2286.
[17] F.J. Harding, S. Surdo, B. Delalat, C. Cozzi, R. Elnathan, S. Gronthos, N.H. Voelcker, and G. Barillaro, "Ordered Silicon Pillar Arrays Prepared by Electrochemical Micromachining: Substrates for High-Efficiency Cell Transfection," ACS Appl. Mater. Interfaces. 8 (2016) 29197.
[18] M.S. Choi, H.G. Na, A. Mirzaei, J.H. Bang, W. Oum, S. Han, S.-W. Choi, M. Kim, C. Jin, S.S. Kim, and H.W. Kim, "Room-temperature NO2 sensor based on electrochemically etched porous silicon," J. Alloys Compd. 811 (2019) 151975.
[19] S. Huang, B. Zhang, Y. Lin, C.S. Lee, and X. Zhang, "Compact Biomimetic Hair Sensors Based on Single Silicon Nanowires for Ultrafast and Highly-Sensitive Airflow Detection," Nano Lett. 21 (2021) 4684.
[20] Y. Qin, D. Liu, T. Zhang, and Z. Cui, "Ultrasensitive Silicon Nanowire Sensor Developed by a Special Ag Modification Process for Rapid NH3 Detection," ACS Appl. Mater. Interfaces. 9 (2017) 28766.
[21] J.Y. Oh, H.-J. Jang, W.-J. Cho, and M.S. Islam, "Highly sensitive electrolyte-insulator-semiconductor pH sensors enabled by silicon nanowires with Al2O3/SiO2 sensing membrane," Sens. Actuators B Chem. 171-172 (2012) 238.
[22] R. Smith, S.M. Geary, and A.K. Salem, "Silicon Nanowires and Their Impact on Cancer Detection and Monitoring," ACS Appl. Nano Mater. 3 (2020) 8522.
[23] A.A. Talin, L.L. Hunter, F. Léonard, and B. Rokad, "Large area, dense silicon nanowire array chemical sensors," Appl. Phys. Lett. 89 (2006) 153102.
[24] Q. Hong, Y. Cao, J. Xu, H. Lu, J. He, and J.L. Sun, "Self-powered ultrafast broadband photodetector based on p-n heterojunctions of CuO/Si nanowire array," ACS Appl. Mater. Interfaces. 6 (2014) 20887.
[25] Y. Huang, H. Liang, Y. Zhang, S. Yin, C. Cai, W. Liu, and T. Jia, "Vertical Tip-to-Tip Interconnection p–n Silicon Nanowires for Plasmonic Hot Electron-Enhanced Broadband Photodetectors," ACS Appl. Nano Mater. 4 (2021) 1567.
[26] D. Wu, Z. Lou, Y. Wang, Z. Yao, T. Xu, Z. Shi, J. Xu, Y. Tian, X. Li, and Y.H. Tsang, "Photovoltaic high-performance broadband photodetector based on MoS2/Si nanowire array heterojunction," Sol. Energy Mater. Sol. Cells. 182 (2018) 272.
[27] G. Ma, R. Du, Y.-n. Cai, C. Shen, X. Gao, Y. Zhang, F. Liu, W. Shi, W. Du, and Y. Zhang, "Improved power conversion efficiency of silicon nanowire solar cells based on transition metal oxides," Sol. Energy Mater. Sol. Cells. 193 (2019) 163.
[28] S.A. Moiz, A.N.M. Alahmadi, and A.J. Aljohani, "Design of Silicon Nanowire Array for PEDOT:PSS-Silicon Nanowire-Based Hybrid Solar Cell," Energies. 13 (2020) 3797.
[29] C. Xie, B. Nie, L. Zeng, F.-X. Liang, M.-Z. Wang, L. Luo, M. Feng, Y. Yu, C.-Y. Wu, and Y. Wu, "Core–shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photodetectors," Acs Nano. 8 (2014) 4015.
[30] V. Kumar, S.K. Saxena, V. Kaushik, K. Saxena, A.K. Shukla, and R. Kumar, "Silicon nanowires prepared by metal induced etching (MIE): good field emitters," RSC Adv. 4 (2014) 57799.
[31] Y.F. Tzeng, H.C. Wu, P.S. Sheng, N.H. Tai, H.T. Chiu, C.Y. Lee, and I.N. Lin, "Stacked silicon nanowires with improved field enhancement factor," ACS Appl. Mater. Interfaces. 2 (2010) 331.
[32] D. Yu, C. Lee, I. Bello, X. Sun, Y. Tang, G. Zhou, Z. Bai, Z. Zhang, and S. Feng, "Synthesis of nano-scale silicon wires by excimer laser ablation at high temperature," Solid State Commun. 105 (1998) 403.
[33] R.A. Puglisi, C. Bongiorno, S. Caccamo, E. Fazio, G. Mannino, F. Neri, S. Scalese, D. Spucches, and A. La Magna, "Chemical Vapor Deposition Growth of Silicon Nanowires with Diameter Smaller Than 5 nm," ACS Omega. 4 (2019) 17967.
[34] U. Langklotz, T. Lein, C. Schulze, M. Weiser, A. Krause, and A. Michaelis, "Scalable fabrication of gold nanoparticles with adjustable size distribution as catalytic nuclei for the CVD growth of silicon nanowires," Appl. Surf. Sci. 502 (2020) 144203.
[35] J.V. Wittemann, W. Münchgesang, S. Senz, and V. Schmidt, "Silver catalyzed ultrathin silicon nanowires grown by low-temperature chemical-vapor-deposition," J. Appl. Phys. 107 (2010) 096105.
[36] Y.-S. Park, S.Y. Yoon, J.S. Park, and J.S. Lee, "Deflection induced cellular focal adhesion and anisotropic growth on vertically aligned silicon nanowires with differing elasticity," NPG Asia Mater. 8 (2016) e249.
[37] Y. Liu, G. Ji, J. Wang, X. Liang, Z. Zuo, and Y. Shi, "Fabrication and photocatalytic properties of silicon nanowires by metal-assisted chemical etching: effect of H2O2 concentration," Nanoscale Res. Lett. 7 (2012) 1.
[38] S. Li, W. Ma, Y. Zhou, X. Chen, Y. Xiao, M. Ma, W. Zhu, and F. Wei, "Fabrication of porous silicon nanowires by MACE method in HF/H2O2/AgNO3 system at room temperature," Nanoscale Res. Lett. 9 (2014) 1.
[39] S.L. Cheng, C.H. Chung, and H.C. Lee, "A Study of the Synthesis, Characterization, and Kinetics of Vertical Silicon Nanowire Arrays on (001)Si Substrates," J. Electrochem. Soc. 155 (2008) D711.
[40] M.R. Zamfir, H.T. Nguyen, E. Moyen, Y.H. Lee, and D. Pribat, "Silicon nanowires for Li-based battery anodes: a review," J. Mater. Chem. A . 1 (2013) 9566.
[41] S.M. Thalluri, J. Borme, D. Xiong, J. Xu, W. Li, I. Amorim, P. Alpuim, J. Gaspar, H. Fonseca, L. Qiao, and L. Liu, "Highly-ordered silicon nanowire arrays for photoelectrochemical hydrogen evolution: an investigation on the effect of wire diameter, length and inter-wire spacing," Sustain. Energy Fuels. 2 (2018) 978.
[42] P. Lu, P. Ohlckers, L. Müller, S. Leopold, M. Hoffmann, K. Grigoras, J. Ahopelto, M. Prunnila, and X. Chen, "Nano fabricated silicon nanorod array with titanium nitride coating for on-chip supercapacitors," Electrochem. commun. 70 (2016) 51.
[43] S. Merzsch, F. Steib, H.S. Wasisto, A. Stranz, P. Hinze, T. Weimann, E. Peiner, and A. Waag, "Production of vertical nanowire resonators by cryogenic-ICP–DRIE," Microsyst. Technol. 20 (2013) 759.
[44] L. Li, Y. Fang, C. Xu, Y. Zhao, K. Wu, C. Limburg, P. Jiang, and K.J. Ziegler, "Controlling the Geometries of Si Nanowires through Tunable Nanosphere Lithography," ACS Appl. Mater. Interfaces. 9 (2017) 7368.
[45] Z. Huang, H. Fang, and J. Zhu, "Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density," Adv. Mater. 19 (2007) 744.
[46] F.J. Wendisch, M. Rey, N. Vogel, and G.R. Bourret, "Large-Scale Synthesis of Highly Uniform Silicon Nanowire Arrays Using Metal-Assisted Chemical Etching," Chem. Mater. 32 (2020) 9425.
[47] B. Zhou, X. Li, T. Shi, G. Liu, H. Cao, and Y. Wang, "Synthesis and morphology control of diluted Si nanowire arrays by metal-assisted chemical etching and thermal oxidation based on nanosphere lithography," J. Mater. Sci. 52 (2017) 6449.
[48] J. Zhu, Z. Yu, G.F. Burkhard, C.-M. Hsu, S.T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, "Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays," Nano lett. 9 (2009) 279.
[49] S.K. Saini and R.V. Nair, "Quantitative analysis of gradient effective refractive index in silicon nanowires for broadband light trapping and anti-reflective properties," J. Appl. Phys. 125 (2019) 103102.
[50] Q. Li, J. Gao, Z. Li, H. Yang, H. Liu, X. Wang, and Y. Li, "Absorption enhancement in nanostructured silicon fabricated by self-assembled nanosphere lithography," Adv. Opt. Mater. 70 (2017) 165.
[51] A.K. Katiyar, A.K. Sinha, S. Manna, R. Aluguri, and S.K. Ray, "Optical photoresponse of CuS-n-Si radial heterojunction with Si nanocone arrays fabricated by chemical etching," Phys. Chem. Chem. Phys. 15 (2013) 20887.
[52] G. Hou, Z. Wang, Z. Lu, H. Song, J. Xu, and K. Chen, "Enhanced Broadband Plasmonic Absorbers with Tunable Light Management on Flexible Tapered Metasurface," ACS Appl. Mater. Interfaces. 12 (2020) 56178.
[53] J.-Y. Jung, Z. Guo, S.-W. Jee, H.-D. Um, K.-T. Park, and J.-H. Lee, "A strong antireflective solar cell prepared by tapering silicon nanowires," Opt. Express. 18 (2010) A286.
[54] H. Kim, H. Jang, B. Kim, M.K. Kim, D.S. Wie, H.S. Lee, D.R. Kim, and C.H. Lee, "Flexible elastomer patch with vertical silicon nanoneedles for intracellular and intratissue nanoinjection of biomolecules," Sci. Adv. 4 (2018) eaau6972.
[55] J.K. Park, Z. Yang, and S. Kim, "Black Silicon/Elastomer Composite Surface with Switchable Wettability and Adhesion between Lotus and Rose Petal Effects by Mechanical Strain," ACS Appl. Mater. Interfaces. 9 (2017) 33333.
[56] X. Zhang, J. Zhang, Z. Ren, X. Li, X. Zhang, D. Zhu, T. Wang, T. Tian, and B. Yang, "Morphology and wettability control of silicon cone arrays using colloidal lithography," Langmuir. 25 (2009) 7375.
[57] Z. Wang, Q. Zhu, Y. Wang, S. Dou, Q. Chen, and N. Lu, "Silver-nanoparticle-grafted silicon nanocones for reproducible Raman detection of trace contaminants in complex liquid environments," Spectrochim. Acta A Mol. Biomol. Spectrosc. 251 (2021) 119447.
[58] Y.M. Chang, P.H. Kao, H.M. Tai, H.W. Wang, C.M. Lin, H.Y. Lee, and J.Y. Juang, "Enhanced field emission characteristics in metal-coated Si-nanocones," Phys. Chem. Chem. Phys. 15 (2013) 10761.
[59] O. Mohsen, A. Lueansaramwong, S. Valluri, V. Korampally, P. Piot, and S. Chattopadhyay. "Field Emission from Silicon Nanocones Cathodes. " IEEE Advanced Accelerator Concepts Workshop (AAC). (2018) 1.
[60] Y.-C. Lee, C.-C. Chang, and Y.-Y. Chou, "Fabrication of broadband anti-reflective sub-micron structures using polystyrene sphere lithography on a Si substrate," Photonics Nanostructures - Fundam. Appl. 12 (2014) 16.
[61] C. Bian, B. Zhang, Z. Zhang, H. Chen, D. Zhang, S. Wang, J. Ye, L. He, J. Jie, and X. Zhang, "Wafer-Scale Fabrication of Silicon Nanocones via Controlling Catalyst Evolution in All-Wet Metal-Assisted Chemical Etching," ACS Omega. 7 (2022) 2234.
[62] H. Lin, H.-Y. Cheung, F. Xiu, F. Wang, S. Yip, N. Han, T. Hung, J. Zhou, J.C. Ho, and C.-Y. Wong, "Developing controllable anisotropic wet etching to achieve silicon nanorods, nanopencils and nanocones for efficient photon trapping," J. Mater. Chem. A . 1 (2013) 9942.
[63] T. Shimizu, N. Tanaka, Y. Tada, Y. Hara, N. Nakamura, J. Taniuchi, K. Takase, T. Ito, and S. Shingubara, "Fabrication of nanocone arrays by two step metal assisted chemical etching method," Microelectron. Eng. 153 (2016) 55.
[64] F.J. Wendisch, M. Abazari, H. Mahdavi, M. Rey, N. Vogel, M. Musso, O. Diwald, and G.R. Bourret, "Morphology-Graded Silicon Nanowire Arrays via Chemical Etching: Engineering Optical Properties at the Nanoscale and Macroscale," ACS Appl. Mater. Interfaces. 12 (2020) 13140.
[65] F. Teng, N. Li, D. Xu, D. Xiao, X. Yang, and N. Lu, "Precise regulation of tilt angle of Si nanostructures via metal-assisted chemical etching," Nanoscale. 9 (2017) 449.
[66] N. Verplanck, Y. Coffinier, V. Thomy, and R. Boukherroub, "Wettability switching techniques on superhydrophobic surfaces," Nanoscale Res. Lett. 2 (2007) 577.
[67] M. Callies and D. Quere, "On water repellency," Soft matter. 1 (2005) 55.
[68] K. Ma, T.S. Chung, and R.J. Good, "Surface energy of thermotropic liquid crystalline polyesters and polyesteramide," J. Polym. Sci. B: Polym. Phys. 36 (1998) 2327.
[69] R.H. Fowler and L. Nordheim, "Electron emission in intense electric fields," Proc. R. soc. Lond. Ser. A-Contain. 119 (1928) 173.
[70] H. Zhang, J. Tang, Q. Zhang, G. Zhao, G. Yang, J. Zhang, O. Zhou, and L.C. Qin, "Field Emission of Electrons from Single LaB6 Nanowires," Adv. Mater. 18 (2006) 87.
[71] Y. Yang, B. Wang, N. Xu, and G. Yang, "Field emission of one-dimensional micro-and nanostructures of zinc oxide," Appl. Phys. Lett. 89 (2006) 043108.
[72] C. Zhao, Y. Li, J. Zhou, L. Li, S. Deng, N. Xu, and J. Chen, "Large-scale synthesis of bicrystalline ZnO nanowire arrays by thermal oxidation of zinc film: growth mechanism and high-performance field emission," Cryst. Growth Des. 13 (2013) 2897.
[73] Y.-C. Lan, M. Yan, and W.-J. Liu, "Screen effects on field emission from an array of one-dimensional nanostructures grown on silicon substrates: A simulation study using classical transport model," J. Vac. Sci. Technol. 25 (2007) 497.
[74] V.S. Kale, R.R. Prabhakar, S.S. Pramana, M. Rao, C.H. Sow, K.B. Jinesh, and S.G. Mhaisalkar, "Enhanced electron field emission properties of high aspect ratio silicon nanowire-zinc oxide core-shell arrays," Phys. Chem. Chem. Phys. 14 (2012) 4614.
[75] S. Maity, N.S. Das, and K.K. Chattopadhyay, "Controlled surface damage of amorphous and crystalline carbon nanotubes for enhanced field emission," Phys. Status Solidi B. 250 (2013) 1919.
[76] J.C. She, S.Z. Deng, N.S. Xu, R.H. Yao, and J. Chen, "Fabrication of vertically aligned Si nanowires and their application in a gated field emission device," Appl. Phys. Lett. 88 (2006) 013112.
[77] H.C. Wu, H.Y. Tsai, H.T. Chiu, and C.Y. Lee, "Silicon rice-straw array emitters and their superior electron field emission," ACS Appl. Mater. Interfaces. 2 (2010) 3285.
[78] H.-F. Hsu, J.-Y. Wang, and Y.-H. Wu, "KOH Etching for Tuning Diameter of Si Nanowire Arrays and Their Field Emission Characteristics," J. Electrochem. Soc. 161 (2013) H53.
[79] H.-Y. Hsieh, S.-H. Huang, K.-F. Liao, S.-K. Su, C.-H. Lai, and L.-J. Chen, "High-density ordered triangular Si nanopillars with sharp tips and varied slopes: one-step fabrication and excellent field emission properties," Nanotechnology. 18 (2007) 505305.
[80] L. Xu, W. Li, J. Xu, J. Zhou, L. Wu, X.-G. Zhang, Z. Ma, and K. Chen, "Morphology control and electron field emission properties of high-ordered Si nanoarrays fabricated by modified nanosphere lithography," Appl. Surf. Sci. 255 (2009) 5414.
[81] H.J. Geipel, N. Hsieh, M.H. Ishaq, C.W. Koburger, and F.R. White, "Composite silicide gate electrodes-interconnections for VLSI device technologies," IEEE J. Solid-State Circuits.15 (1980) 482.
[82] M. Tsai, H. Chao, L. Ephrath, B. Crowder, A. Cramer, R. Bennett, C. Lucchese, and M. Wordeman, "One‐Micron Polycide (WSi2 on Poly‐Si) MOSFET Technology," J. Electrochem. Soc. 128 (1981) 2207.
[83] M.E. Alperin, T.C. Hollaway, R.A. Haken, C.D. Gosmeyer, R.V. Karnaugh, and W.D. Parmantie, "Development of the self-aligned titanium silicide process for VLSI applications," IEEE J. Solid-State Circuits. 20 (1985) 61.
[84] H. Iwai, T. Ohguro, and S.-i. Ohmi, "NiSi salicide technology for scaled CMOS," Microelectron. Eng. 60 (2002) 157.
[85] J.F. DiGregorio and R.N. Wall, "Small area versus narrow line width effects on the C49 to C54 transformation of TiSi/sub 2," IEEE Electron Device Lett. 47 (2000) 313.
[86] Y.-W. Ok, T.-Y. Seong, C.-J. Choi, and K.N. Tu, "Field emission from Ni-disilicide nanorods formed by using implantation of Ni in Si coupled with laser annealing," Appl. Phys. Lett. 88 (2006) 043016.
[87] A. Kosloff, E. Granot, Z. Barkay, and F. Patolsky, "Controlled Formation of Radial Core-Shell Si/Metal Silicide Crystalline Heterostructures," Nano Lett. 18 (2018) 70.
[88] J. Kim, E.-S. Lee, C.-S. Han, Y. Kang, D. Kim, and W.A. Anderson, "Observation of Ni silicide formations and field emission properties of Ni silicide nanowires," Microelectron. Eng. 85 (2008) 1709.
[89] J.-Y. Lin, H.-M. Hsu, and K.-C. Lu, "Growth of single-crystalline nickel silicide nanowires with excellent physical properties," CrystEngComm. 17 (2015) 1911.
[90] W.-L. Chiu, C.-H. Chiu, J.-Y. Chen, C.-W. Huang, Y.-T. Huang, K.-C. Lu, C.-L. Hsin, P.-H. Yeh, and W.-W. Wu, "Single-crystalline δ-Ni 2 Si nanowires with excellent physical properties," Nanoscale Res. Lett. 8 (2013) 1.
[91] C. Chuang and S. Cheng, "Fabrication and properties of well-ordered arrays of single-crystalline NiSi2 nanowires and epitaxial NiSi2/Si heterostructures," Nano Res. 7 (2014) 1592.
[92] B.P. Azeredo, J. Sadhu, J. Ma, K. Jacobs, J. Kim, K. Lee, J.H. Eraker, X. Li, S. Sinha, N. Fang, P. Ferreira, and K. Hsu, "Silicon nanowires with controlled sidewall profile and roughness fabricated by thin-film dewetting and metal-assisted chemical etching," Nanotechnology. 24 (2013) 225305.
[93] Q. Wang, J.J. Li, Y.J. Ma, X.D. Bai, Z.L. Wang, P. Xu, C.Y. Shi, B.G. Quan, S.L. Yue, and C.Z. Gu, "Field emission properties of carbon coated Si nanocone arrays on porous silicon," Nanotechnology. 16 (2005) 2919.
[94] W.L. Chiu, C.H. Chiu, J.Y. Chen, C.W. Huang, Y.T. Huang, K.C. Lu, C.L. Hsin, P.H.
Yeh, W.W. Wu, "Single-crystalline δ-Ni2Si nanowires with excellent physical
properties," Nanoscale Research Letters, 8 (2013) 1.
[95] E.L. Shim, J. Bae, E. Yoo, C. Kang, and Y.J. Choi, "Large Enhancement of Field Emission from ZnO Nanocone Arrays via Patterning Process," J. Appl. Phys. 49 (2010) 115001.
[96] D. McClain, R. Solanki, L. Dong, and J. Jiao, "Synthesis of single crystalline silicon nanowires and investigation of their electron field emission," J. Vac. Sci. Technol. B:Nanotechnol. 24 (2006) 20.
[97] Y.L. Chueh, L.J. Chou, S.L. Cheng, J.H. He, W.W. Wu, and L.J. Chen, "Synthesis of taperlike Si nanowires with strong field emission," Appl. Phys. Lett. 86 (2005) 133112.
[98] S.L. Cheng, H.C. Lin, Y.H. Huang, and S.C. Yang, "Fabrication of periodic arrays of needlelike Si nanowires on (001)Si and their enhanced field emission characteristics," RSC Advances, 7 (2017) 23935.
[99] S.L. Cheng, H.C. Lin, and Y.H. Huang, "Fabrication of vertically well-aligned NiSi2 nanoneedle arrays with enhanced field emission properties," J Phys Chem Solids, 150 (2021) 109892.
[100] S. L. Lee, J. H. Yoon, B. W. Koo, D.H. Shin, J.H. Koo, C.J. Lee, Y.W. Kim, H.J. Kim, T. Y. Lee, "Formation of vertically aligned cobalt silicide nanowire arrays through a solid-state reaction, " IEEE Trans. Nanotechnol. 12 (2013) 704.
[101] C.M. Lu, H.F. Hsu, K.C. Lu, "Growth of single-crystalline cobalt silicide nanowires and their field emission property, " Nanoscale Res. Lett. 8 (2013) 308.
[102] C. Y. Lee, M. P. Lu, K. F. Liao, W. F. Lee, C. T. Huang, S. Y. Chen, and L. J. Chen, " Free-standing single-crystal NiSi2 nanowires with excellent electrical transport and field emission properties, " J. Phys. Chem. C. 113 (2009) 2286.
指導教授 鄭紹良(Shao-Liang Cheng) 審核日期 2022-9-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明