博碩士論文 109324011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:52.14.22.250
姓名 黃信憲(Hsin-Hsien Huang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 新興糖基雙子型界面活性劑之結構以及其對基因轉染效率之影響
(Effect on Transfection Efficiency of the Structure of a Novel Sugar-based Gemini Surfactant)
相關論文
★ 雙連續相中孔二氧化鈦光催化以及電子結構之實驗與模擬研究★ 聚合物-奈米粒子複合材料在玻璃轉移溫度下的結構與動力學相關性之實驗與模擬研究
★ 自發曲率、金屬離子吸附以及微脂體膜融合效率三者間之相關性探討★ 脂質組成成分對細胞膜物理性質與生物功能的影響
★ 添加具有抗菌潛力的胜肽對磷脂質自組裝結構與彈性性質的影響★ 分子構型與表面電荷密度對雙子型陰陽離子界面活性劑系統之相行為影響
★ 探討具有不同間隔長度的陰、陽離子雙子型界面活性劑對於DNA壓實與解壓實之影響★ 具抗菌潛力之胜肽如何影響脂質膜的彈性性質與結構完整性
★ CoCrFeMnNi 高熵合金 形變行為之探討★ 透過改變磷脂質排列密度減少Amyloid β與膜之間交互作用
★ 對生物膜具活性的胜肽誘導相分離脂質膜產生結構上擾動★ 人類脂肪幹細胞於生醫材料塗佈細胞外間質之純化及分化
★ 發展量測雙層脂質膜的排列密度之實驗技術★ 利用酸鹼度敏感型雙子型界面活性劑製作之基因載體對核內體脂質膜結構之影響
★ 開發預測雙子型界面活性劑之自組裝結構的方法★ 抗肌萎縮蛋白的膜結合錨如何影響其與脂質膜的相互作用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 基因治療是利用生物學方法將目的基因導入患者體內,使之達成目的基因產物,從而使疾病得到治療之療程,而高效的DNA轉染通常需要載體的協助。近年來,利用陽離子雙子型界面活性劑(通過將兩個界面活性劑分子與間隔物連接形成的二聚體狀界面活性劑)製成的奈米載體進行 DNA 轉染一直是科學家研究的熱門主題。然而,與病毒載體相比,這些非病毒載體的效率仍然很低。因此,許多科學家致力於研究影響轉染效率的因素,試圖做出改進。根據文獻,雙子型界面活性劑間隔基若擁有對 pH 的敏感的化學基團,可能提高其轉染效率。另一方面,糖基雙子型界面活性劑因其糖單元的可生物降解性和低細胞毒性而成為了非病毒載體的絕佳選擇之一。在這項研究中,我們合成了具有 N,N′-乙醯乙二胺間隔基的糖基雙子型界面活性劑,並探討其結構隨pH環境差異所產生的變化,進而研究結構對轉染效率影響。在這項研究中,我們發現糖基上的氫氧基與間隔基上的N,N′-乙醯乙二胺基都使整個雙子型界面活性劑的分子的結構,更容易因pH值的改變產生變化,且此界面活性劑能包覆DNA的能力極好,使其能夠達到非常高的轉染效率,因此,此項研究不管是在新材料的應用上,或是研究背後的機制上,必定能在細胞轉染的領域有所幫助。
摘要(英) Gene therapy relies on DNA transfection to repair pathogenic genes, and efficient DNA transfection usually requires the assistance of carriers. DNA transfection by nanocarriers made of cationic gemini surfactants (a dimer-like surfactant formed by linking two surfactant molecules with a spacer) has been a hot topic for years; however, compared to virus-based carriers, the efficiency of these non-viral carriers remains low. Therefore, for the past decade, many scientists have looked into factors that determine the transfection efficiency in an attempt to make improvements. Earlier researches showed that certain chemical groups such as amines on the spacer of gemini surfactants endowed the surfactants with pH-sensitivity and might thereby improve their transfection efficiency. On the other hand, the sugar-based gemini surfactants have been a great choice for non-viral carriers due to the biodegradability and low cytotoxicity of their saccharide units. Accordingly, in this study, we synthesize a sugar-based gemini surfactant with a N,N’-acetylethylenediamine spacer, and explore the changes of its structure with the pH environment, and further study the effect of the structure on the transfection efficiency. In this study, we found that the hydroxyl group on the sugar group and the N,N′-acetylethylenediamine group on the spacer both make the molecular structure of the whole gemini surfactant more susceptible to the variety of pH value, and the ability of this gemini surfactant to form complexes with DNA is excellent, which enabling it to achieve a very high transfection efficiency. Therefore, this research will definitely be helpful for understanding the mechanism behind cell transfection and creating better biomaterial.
關鍵字(中) ★ 雙子型界面活性劑
★ 糖基雙子型界面活性劑
★ 基因轉染
★ 基因治療
關鍵字(英) ★ Gemini Surfactant
★ Sugar-base gemini surfactant
★ Gene transfection
★ Gene Therapy
論文目次 摘要 II
ABSTRACT III
致謝 IV
目錄 VI
圖目錄 VIII
表目錄 IX
第一章 緒論 1
1-1 基因轉染 1
1-2 非病毒奈米載體 3
1-3 雙子型界面活性劑 5
1-4 糖基雙子型界面活性劑 7
1-5 酸鹼度敏感型雙子型界面活性劑 8
1-6 胞吞作用以及內體逃逸 10
1-7 研究目的與動機 13
第二章 實驗方法 14
2-1 實驗材料 14
2-1-1 合成實驗藥品 14
2-1-2 實驗藥品 15
2-2 實驗儀器 17
2-3 雙子型界面活性劑合成 18
2-4 實驗方法 21
2-4-1 溶液製備 21
2-4-2 樣品製備 25
2-5 細胞實驗 27
2-5-1 HEK-293T繼代培養 27
2-5-2 轉染效率分析 28
2-5-3 載體包覆DNA之能力分析(電泳) 30
2-5-4 載體進入細胞之途徑分析(Flow cytometry) 31
2-6 分析儀器及測量方式介紹 32
2-6-1 核磁共振光譜(NMR) 32
2-6-2 動態光散射(DLS) 34
2-6-3 穿透式電子顯微鏡(TEM) 36
2-6-4 酵素免疫分析儀(ELISA reader) 38
2-6-5 DNA膠體電泳(Electrophoresis) 39
2-6-6 流式細胞分選儀(Flow Cytometer) 40
第三章 結果與討論 42
3-1 合成結果 42
3-1-1 核磁共振光譜結果 42
3-1-2 界面活性劑性質分析 46
3-2 細胞實驗結果 53
3-2-1 載體包覆率實驗(電泳) 53
3-2-2 載體進入細胞之途徑分析 55
3-2-3 轉染效率分析 57
第四章 結論 60
第五章 文獻目錄與參考資料 62
參考文獻 1. Donkuru, M., et al., Advancing nonviral gene delivery: lipid-and surfactant-based nanoparticle design strategies. Nanomedicine, 2010. 5(7): p. 1103-1127.
2. Niidome, T. and L. Huang, Gene therapy progress and prospects: nonviral vectors. Gene therapy, 2002. 9(24): p. 1647-1652.
3. Mellott, A.J., M.L. Forrest, and M.S. Detamore, Physical non-viral gene delivery methods for tissue engineering. Annals of biomedical engineering, 2013. 41(3): p. 446-468.
4. Caffery, B., J.S. Lee, and A.A. Alexander-Bryant, Vectors for glioblastoma gene therapy: viral & non-viral delivery strategies. Nanomaterials, 2019. 9(1): p. 105.
5. Somia, N. and I.M. Verma, Gene therapy: trials and tribulations. Nature Reviews Genetics, 2000. 1(2): p. 91-99.
6. Islam, M.A., et al., Major degradable polycations as carriers for DNA and siRNA. Journal of Controlled Release, 2014. 193: p. 74-89.
7. Mintzer, M.A. and E.E. Simanek, Nonviral vectors for gene delivery. Chemical reviews, 2009. 109(2): p. 259-302.
8. Hayat, S.M.G., et al., Gene delivery using lipoplexes and polyplexes: principles, limitations and solutions. Critical Reviews™ in Eukaryotic Gene Expression, 2019. 29(1).
9. Toualbi, L., M. Toms, and M. Moosajee, The landscape of non-viral gene augmentation strategies for inherited retinal diseases. International Journal of Molecular Sciences, 2021. 22(5): p. 2318.
10. Rajala, A., et al., Nanoparticle-assisted targeted delivery of eye-specific genes to eyes significantly improves the vision of blind mice in vivo. Nano letters, 2014. 14(9): p. 5257-5263.
11. Sum, C.H., et al., Physical characterization of gemini surfactant-based synthetic vectors for the delivery of linear covalently closed (LCC) DNA ministrings. PLoS One, 2015. 10(11): p. e0142875.
12. Kamal, M.S., A review of gemini surfactants: potential application in enhanced oil recovery. Journal of Surfactants and Detergents, 2016. 19(2): p. 223-236.
13. Kirby, A.J., et al., Gemini surfactants: new synthetic vectors for gene transfection. Angewandte Chemie International Edition, 2003. 42(13): p. 1448-1457.
14. Bombelli, C., et al., Gemini surfactant based carriers in gene and drug delivery. Current medicinal chemistry, 2009. 16(2): p. 171-183.
15. Zana, R., Dimeric (gemini) surfactants: effect of the spacer group on the association behavior in aqueous solution. Journal of colloid and interface science, 2002. 248(2): p. 203-220.
16. Moghaddam, B., Design and development of cationic liposomes as DNA vaccine adjuvants. 2013, Aston University.
17. Menger, F.M. and B.N. Mbadugha, Gemini surfactants with a disaccharide spacer. Journal of the American Chemical Society, 2001. 123(5): p. 875-885.
18. Lin, L.-H., et al., Oxyethylene chain length affects the physicochemical properties of sugar-based anionic surfactants with phosphates groups. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015. 485: p. 118-124.
19. Johnsson, M., et al., Sugar-based gemini surfactants with pH-dependent aggregation behavior: vesicle-to-micelle transition, critical micelle concentration, and vesicle surface charge reversal. Langmuir, 2003. 19(11): p. 4609-4618.
20. Donkuru, M., et al., Designing pH-sensitive gemini nanoparticles for non-viral gene delivery into keratinocytes. Journal of Materials Chemistry, 2012. 22(13): p. 6232-6244.
21. Hoque, J., et al., Effect of amide bonds on the self-assembly of gemini surfactants. Physical Chemistry Chemical Physics, 2014. 16(23): p. 11279-11288.
22. Fielden, M.L., et al., Sugar‐based tertiary amino gemini surfactants with a vesicle‐to‐micelle transition in the endosomal pH range mediate efficient transfection in vitro. European Journal of Biochemistry, 2001. 268(5): p. 1269-1279.
23. Aldosari, B.N., I.M. Alfagih, and A.S. Almurshedi, Lipid nanoparticles as delivery systems for RNA-based vaccines. Pharmaceutics, 2021. 13(2): p. 206.
24. Rejman, J., et al., Size-dependent internalization of particles via the pathways of clathrin-and caveolae-mediated endocytosis. Biochemical journal, 2004. 377(1): p. 159-169.
25. Parton, R.G., Caveolae: structure, function, and relationship to disease. Annual review of cell and developmental biology, 2018. 34: p. 111-136.
26. Gilleron, J., et al., Image-based analysis of lipid nanoparticle–mediated siRNA delivery, intracellular trafficking and endosomal escape. Nature biotechnology, 2013. 31(7): p. 638-646.
27. Sahay, G., D.Y. Alakhova, and A.V. Kabanov, Endocytosis of nanomedicines. Journal of controlled release, 2010. 145(3): p. 182-195.
28. Bus, T., A. Traeger, and U.S. Schubert, The great escape: how cationic polyplexes overcome the endosomal barrier. Journal of Materials Chemistry B, 2018. 6(43): p. 6904-6918.
29. Wang, R., et al., Synthesis and Aggregation of Novel Sugar‐Based Gemini Surfactant with a N, N′‐Acetylethylenediamine Spacer in Aqueous Solution. Journal of Surfactants and Detergents, 2020. 23(4): p. 697-703.
30. Rabi, I.I., et al., A new method of measuring nuclear magnetic moment. Physical review, 1938. 53(4): p. 318.
31. Skoog, D.A., F.J. Holler, and S.R. Crouch, Principles of instrumental analysis. 2017: Cengage learning.
32. 邱玉洁, et al., 生物医学核磁共振中的模式识别方法. 波谱学杂志, 2005. 22(1): p. 99-111.
33. Bax, A. and S. Grzesiek, Methodological advances in protein NMR. Accounts of Chemical Research, 1993. 26(4): p. 131-138.
34. Govindaraju, V., K. Young, and A.A. Maudsley, Proton NMR chemical shifts and coupling constants for brain metabolites. NMR in Biomedicine: An International Journal Devoted to the Development and Application of Magnetic Resonance In Vivo, 2000. 13(3): p. 129-153.
35. Uhlenbeck, G.E. and L.S. Ornstein, On the theory of the Brownian motion. Physical review, 1930. 36(5): p. 823.
36. Arzenšek, D., R. Podgornik, and D. Kuzman. Dynamic light scattering and application to proteins in solutions. in Seminar, Department of Physics, University of Ljubljana. 2010.
37. Bhattacharjee, S., DLS and zeta potential–what they are and what they are not? Journal of controlled release, 2016. 235: p. 337-351.
38. Goldburg, W.I., Dynamic light scattering. American Journal of Physics, 1999. 67(12): p. 1152-1160.
39. Champness, P.E., Electron diffraction in the transmission electron microscope. 2020: Garland Science.
40. Giannuzzi, L.A. and F.A. Stevie, A review of focused ion beam milling techniques for TEM specimen preparation. Micron, 1999. 30(3): p. 197-204.
41. Williams, D.B. and C.B. Carter, The transmission electron microscope, in Transmission electron microscopy. 1996, Springer. p. 3-17.
42. De Broglie, L., Waves and quanta. Nature, 1923. 112(2815): p. 540-540.
43. Kwiecińska, B., S. Pusz, and B.J. Valentine, Application of electron microscopy TEM and SEM for analysis of coals, organic-rich shales and carbonaceous matter. International Journal of Coal Geology, 2019. 211: p. 103203.
44. Clark, B.R. and E. Engvall, Enzyme-linked immunosorbent assay (ELISA): Theoretical and practical aspects, in Enzyme-immunoassay. 2018, CRC Press. p. 167-180.
45. Lin, A.V., Indirect Elisa, in ELISA. 2015, Springer. p. 51-59.
46. Gonzalez, R.M., et al., Development and validation of sandwich ELISA microarrays with minimal assay interference. Journal of proteome research, 2008. 7(6): p. 2406-2414.
47. Libeau, G., et al., Development of a competitive ELISA for detecting antibodies to the peste des petits ruminants virus using a recombinant nucleobrotein. Research in veterinary science, 1995. 58(1): p. 50-55.
48. Juers, D.H., B.W. Matthews, and R.E. Huber, LacZ β‐galactosidase: structure and function of an enzyme of historical and molecular biological importance. Protein Science, 2012. 21(12): p. 1792-1807.
49. Lyklema, J., Fundamentals of interface and colloid science: soft colloids. Vol. 5. 2005: Elsevier.
50. Timms, J.F. and R. Cramer, Difference gel electrophoresis. Proteomics, 2008. 8(23‐24): p. 4886-4897.
51. Aaij, C. and P. Borst, The gel electrophoresis of DNA. Biochimica et Biophysica Acta (BBA)-Nucleic Acids and Protein Synthesis, 1972. 269(2): p. 192-200.
52. Hames, B.D., Gel electrophoresis of proteins: a practical approach. Vol. 197. 1998: OUP Oxford.
53. Adan, A., et al., Flow cytometry: basic principles and applications. Critical reviews in biotechnology, 2017. 37(2): p. 163-176.
54. McKinnon, K.M., Flow cytometry: an overview. Current protocols in immunology, 2018. 120(1): p. 5.1. 1-5.1. 11.
55. Kron, P., J. Suda, and B.C. Husband, Applications of flow cytometry to evolutionary and population biology. Annual Review of Ecology, Evolution, and Systematics, 2007: p. 847-876.
56. Barlogie, B., et al., Flow cytometry in clinical cancer research. Cancer research, 1983. 43(9): p. 3982-3997.
57. Zana, R. and Y. Talmon, Dependence of aggregate morphology on structure of dimeric surfactants. Nature, 1993. 362(6417): p. 228-230.
58. Peltonen, L.J. and J. Yliruusi, Surface pressure, hysteresis, interfacial tension, and CMC of four sorbitan monoesters at water–air, water–hexane, and hexane–air interfaces. Journal of colloid and interface science, 2000. 227(1): p. 1-6.
59. Pérez-Rodríguez, M., et al., A comparative study of the determination of the critical micelle concentration by conductivity and dielectric constant measurements. Langmuir, 1998. 14(16): p. 4422-4426.
60. Patist, A., et al., On the measurement of critical micelle concentrations of pure and technical‐grade nonionic surfactants. Journal of Surfactants and Detergents, 2000. 3(1): p. 53-58.
61. Wang, L.-H., K.G. Rothberg, and R. Anderson, Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. The Journal of cell biology, 1993. 123(5): p. 1107-1117.
62. Koivusalo, M., et al., Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. Journal of Cell Biology, 2010. 188(4): p. 547-563.
63. Horikawa, Y.T., et al., Caveolin-3 expression and caveolae are required for isoflurane-induced cardiac protection from hypoxia and ischemia/reperfusion injury. Journal of molecular and cellular cardiology, 2008. 44(1): p. 123-130.
指導教授 陳儀帆(Yi-Fan Chen) 審核日期 2022-9-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明