博碩士論文 109324034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.15.190.144
姓名 薛仲軒(Chung-Hsuan Hsueh)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 部分碳化聚乙烯吡咯烷酮黏著劑應用於高電壓鋰離子電池正極之研究
(Partially Carbonized Polyvinylpyrrolidone as Binder for High-Voltage Li-ion Battery Cathode)
相關論文
★ 氫氧化鎳/奈米碳管/碳纖維複合電極之製備及其於尿素溶液中電極動力學之研究★ 無黏合劑鉻摻雜鋰鎳錳氧/碳纖維高電壓複合正極與奈米碳管/碳纖維複合負極應用於鋰離子電池之研究
★ 鈣鈦礦釔鐵氧化物/碳纖維複合電極應用於有機汙水處理之研究★ 碳黑改質對高電壓鋰離子電池正極電化學表現影響之研究
★ 電化學輔助紫外光/氯程序應用於水楊酸降解之研究★ 以廢棄太陽能電池製作Si/SiOx/Al2O3碳纖維複合式負極應用於鋰離子電池之研究
★ 釔鐵氧化物/氧化鈰光陽極應用於有機汙水處理★ 水熱法合成之Li1+xAlxTi2-x(PO4)3與聚偏二氟乙烯/醋酸纖維素複合型固態電解質 應用於鋰離子電池之研究
★ 含水深共熔溶劑系統電化學製備之奈米氫氧化鎳/鎳/碳纖維氈複合電極應用於水分解製氫★ 以回收太陽能板之矽基材料結合石墨製備Si/SiOx/C複合負極應用於鋰離子電池之研究
★ 原位聚合生成雙鋰鹽系統類凝膠聚(1,3-二氧戊環)電解質應用於鋰離子電池之研究★ 以含水深共熔溶劑電化學系統製備奈米鎳銅合金/碳纖維氈複合電極應用於水分解製氫
★ 以有機金屬框架結合乙醇輔助水熱法製備鐵摻雜鋰鎳錳氧高電壓正極 應用於鋰離子電池之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-6-30以後開放)
摘要(中) LiNi0.5Mn1.5O4 (LNMO)正極材料在商業化上是令人期待的,因其具有目前正極材料中相當突出的操作電壓(4.7 V vs. Li/Li+)和可觀的電容量(140 mAh g-1)。然而,商用電解液(六氟磷酸鋰(LiPF6)溶解於有機碳酸酯類當中)在高工作電壓(> 4.5V)會加速劣化,導致電池性能衰退。另一方面,商業鋰離子電池大多以鋁箔以及聚偏二氟乙烯(PVDF)當作正極的集電體及黏著劑,在高工作電壓下會加速鋁箔集電體的溶解,加上PVDF的黏著性能有限,可能會導致電極與活性材料分層的問題,造成活性物質加速脫落。為了解決這些問題,我們在本研究中提出了兩項策略:首先,我們將鋁箔集電體換成碳纖維集電體,碳纖維所具有的3D結構能夠有效強化鋰離子擴散的能力,並且能夠使活性物質鑲入其中,防止活性物質和集電體產生結構分層,導致電化學性能受到影響。再來,本研究透過部分碳化聚乙烯吡咯烷酮(PVP)取代原先的PVDF黏著劑。這項策略不僅能夠提升整體電極的導電性,並且碳化PVP會使其在LNMO表面上形成一層具有含氮官能基的碳塗層。根據文獻指出,這些含氮官能基或許有減輕電解液於高電壓下劣化的現象。除此之外,為了改善集電體與活性物質之間脫落的問題,我們使用水以及乙醇當作活性物質漿料之溶劑,這會影響活性物質與集電體彼此之間的貼合度,最終可能會影響到電池的充放電性能,所以在本次實驗中選用了乙醇及水作為漿料溶劑進行了比較。
本研究透過SEM切面圖及接觸角測量儀了解不同的漿料溶劑與碳紙集電體之間的貼合度,並且透過SEM及XPS分析不同退火時間下的LNMO表面碳塗層的微觀結構以及表面官能基組成,利用TEM分析不同退火時間下的LNMO碳塗層變化。最後,以改良式電極與鋰金屬片組裝的半電池進行電化學性能測試。由結果顯示,以水/乙醇(50 / 50 wt%)當作溶劑並且在2小時的退火程序下的樣品具有最高的放電容量與優異的快速充放電及循環穩定性表現。在1C的初始放電容量高達122.5mAh g-1,經過100圈循環後仍然有93.4%的容量保持率,明顯優於碳纖維集電體與鋁箔集電體製作而成之商用電極的循環穩定性(容量保持率分別為79.2%及65.6%)。由此研究發現利用部分碳化聚乙烯吡咯烷酮以及碳紙集電體,製作出的改良式電極能夠有效提升高電壓鋰鎳錳氧正極在電池中的表現,改善放電容量以及循環穩定性等效果。
摘要(英) LiNi0.5Mn1.5O4 (LNMO) has the highest operating voltage (4.7 V vs. Li/Li+) and moderate capacity (140 mAh g-1), which lead to a favorable energy density. However, the high operating voltage (>4.5V) will cause the decomposition of commercial electrolyte (lithium hexafluorophosphate (LiPF6) dissolved in organic carbonates) easily. It would be accelerated by high-voltage cathode side, resulting in battery failure. On the other hand, the electrode composition will also cause some problem at high operating voltage. For example, the aluminum is used as a current collector for the positive electrode. It accelerates the dissolution of the current collector and even the shedding of active substances at high voltage. Besides, the polymer binder PVDF used in electrodes has the characteristic of insulation, hindering electron transfer from the active materials to the current collector and degrading the whole performance of the electrode.
To solve these problems, we provide two strategies in the study. First, we used carbon paper (CP) to replace the aluminium current collector. This is because the CP has the 3D structure to enhanced the diffusion of Li+ and also avoid the shedding of active substances. Second, we carbonized polyvinylpyrrolidone (PVP) and used it to replace the PVDF binder. This tactic not only increased the electrical conductivity of electrode, but also prevented insulating binder which may induce some side reactions with the electrolyte. Besides, when we carbonized the PVP, a carbon coating layer can be formed on LNMO. This coating layer may protect the activity material from the attack of corrosive products of electrolyte degradation and mitigate the electrolyte decomposition. In addition, the properties of the PVP binders changed drastically because of the interactions with the different solvents (water, ethanol), significantly affecting the capacity and electrochemical cycle stability of the electrodes.
Among all of the samples, water /ethanol (50 / 50 wt%) as a solvent and annealed for 2 hours have the highest discharge capacity (122.5mAh g-1) and excellent rate capability and cycle stability (93.4%). The modified electrode has better cycle stability than the traditional electrodes made of carbon paper and aluminum foil current collectors (rate capability: 79.2% and 65.6%).
關鍵字(中) ★ 高電壓正極
★ 聚乙烯吡咯烷酮
★ 部分碳化
★ 黏著劑
★ 表面修飾
★ 鋰離子電池
關鍵字(英) ★ high-voltage
★ cathode
★ partially carbonized
★ polymer binder
★ surface modification
★ lithium ion battery
論文目次 摘要 i
Abstract iii
致謝 iv
目錄 v
圖目錄 viii
表目錄 xii
第一章、序論 1
1-1能源議題現況 1
1-2鋰離子電池之發展近況 2
1-3鋰離子電池之運作原理組成 4
1-4鋰離子電池組成材料 6
1-4-1正極材料 6
1-4-2負極材料 9
1-4-3 電解液 12
1-4-4 導電添加劑(導電碳) 13
1-4-5 集電體 14
1-4-6黏著劑 16
1-4-7隔離膜 17
1-5 研究動機 18
第二章、文獻回顧 19
2-1 高電壓LiNi0.5Mn1.5O4 (LNMO)正極材料 19
2-2 電解液於高電壓之劣化情形 23
2-3 碳纖維集電體 26
2-4 部分碳化黏著劑 28
第三章、實驗方法 32
3-1實驗架構 32
3-2改良式電極與傳統電極之製備 36
3-3鈕扣電池之製備 38
3-4 電極材料分析 39
3-4-1 表面張力分析儀 (Surface Tension Meter) 40
3-4-2 接觸角分析儀 (Contact Angle Analyzer) 40
3-4-3 熱重分析儀 (Thermogravimetric Analyzer, TGA) 41
3-4-4 高解析場發掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, FE-SEM) 41
3-4-5 X光繞射分析儀 (X-ray Diffraction, XRD) 42
3-4-6 傅立葉轉換紅外線光譜儀 (Fourier-transform infrared spectroscopy, FTIR) 42
3-4-7 拉曼光譜儀 (Raman spectroscopy) 43
3-4-8 X射線光電子能譜分析(X-ray Photoelectron Spectroscopy, XPS) 43
3-4-9 氣體吸附儀 (Gas Sorption Analyzer) 44
3-4-10 聚焦離子束顯微鏡(Focused Ion Beam, FIB) 44
3-4-11 穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM) 45
3-5電化學分析 46
3-5-1充放電性能測試 (Charge/Discharge Test) 46
3-5-2 EIS阻抗測試 (Electrochemical Impedance Spectroscopy, EIS) 47
第四章、結果與討論 48
4-1 活性物質漿料溶劑的改變對於改良式電極之影響 48
4-1-1 不同溶劑與碳紙之接觸角及電極表面分析 48
4-1-2 溶劑之表面張力及電極表面分析 50
4-1-3 LNMO之表面型態分析 52
4-1-4 充放電性能測試 56
4-1-5 電化學阻抗分析 62
4-2 退火時間的改變對於改良式電極之影響 66
4-2-1熱重分析 66
4-2-2 XRD圖譜分析 69
4-2-3 FTIR光譜分析 70
4-2-4 拉曼光譜分析 72
4-2-5 FE-SEM表面分析 73
4-2-6 比表面積分析 76
4-2-7 表面碳塗層橫切面型態分析 78
4-2-8 電極表面元素分析 84
4-2-9 充放電性能測試 90
4-2-10 電化學阻抗分析 96
4-3 改良式電極與傳統電極之電性比較 99
4-3-1 充放電性能測試 99
4-3-2 電化學阻抗分析 104
第五章、結論與未來展望 108
5-1 結論 108
5-1-1 活性物質漿料溶劑的改變對於改良式電極之影響 108
5-1-2退火時間的改變對於改良式電極之影響 109
5-1-3改良式電極與傳統電極之電性比較 110
第六章、參考文獻 111
附錄一 119
參考文獻 1. May, G.J., A. Davidson, and B. Monahov, Lead batteries for utility energy storage: A review. Journal of Energy Storage, 2018. 15: p. 145-157.
2. Kebede, A.A., et al., A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration. Renewable and Sustainable Energy Reviews, 2022. 159.
3. Li, S., et al., Fast Charging Anode Materials for Lithium‐Ion Batteries: Current Status and Perspectives. Advanced Functional Materials, 2022. 32(23).
4. Cho, J., S. Jeong, and Y. Kim, Commercial and research battery technologies for electrical energy storage applications. Progress in Energy and Combustion Science, 2015. 48: p. 84-101.
5. Fan, X. and C. Wang, High-voltage liquid electrolytes for Li batteries: progress and perspectives. Chem Soc Rev, 2021. 50(18): p. 10486-10566.
6. Kabir, M.M. and D.E. Demirocak, Degradation mechanisms in Li-ion batteries: a state-of-the-art review. International Journal of Energy Research, 2017. 41(14): p. 1963-1986.
7. Li, W., B. Song, and A. Manthiram, High-voltage positive electrode materials for lithium-ion batteries. Chem Soc Rev, 2017. 46(10): p. 3006-3059.
8. Manthiram, A., A reflection on lithium-ion battery cathode chemistry. Nat Commun, 2020. 11(1): p. 1550.
9. Goodenough, J.B., Metallic oxides. Progress in Solid State Chemistry, 1971. 5: p. 145-399.
10. Ma, Q., et al., Viscoelastic and Nonflammable Interface Design–Enabled Dendrite‐Free and Safe Solid Lithium Metal Batteries. Advanced Energy Materials, 2019. 9(13).
11. Gong, J.Q., Q.S. Wang, and J.H. Sun, Thermal analysis of nickel cobalt lithium manganese with varying nickel content used for lithium ion batteries. Thermochimica Acta, 2017. 655: p. 176-180.
12. Yi, T.-F., S.-Y. Yang, and Y. Xie, Recent advances of Li4Ti5O12 as a promising next generation anode material for high power lithium-ion batteries. Journal of Materials Chemistry A, 2015. 3(11): p. 5750-5777.
13. Gong, Z. and Y. Yang, Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energy & Environmental Science, 2011. 4(9).
14. Liang, G., et al., Developing high-voltage spinel LiNi0.5Mn1.5O4 cathodes for high-energy-density lithium-ion batteries: current achievements and future prospects. Journal of Materials Chemistry A, 2020. 8(31): p. 15373-15398.
15. Li, W., E.M. Erickson, and A. Manthiram, High-nickel layered oxide cathodes for lithium-based automotive batteries. Nature Energy, 2020. 5(1): p. 26-34.
16. Zubi, G., et al., The lithium-ion battery: State of the art and future perspectives. Renewable and Sustainable Energy Reviews, 2018. 89: p. 292-308.
17. Yang, K., et al., The simulation on thermal stability of LiNi0.5Mn1.5O4/C electrochemical systems. Journal of Power Sources, 2016. 302: p. 1-6.
18. Jena, K.K., A. AlFantazi, and A.T. Mayyas, Comprehensive Review on Concept and Recycling Evolution of Lithium-Ion Batteries (LIBs). Energy & Fuels, 2021. 35(22): p. 18257-18284.
19. Chen, L., et al., High-Energy Li Metal Battery with Lithiated Host. Joule, 2019. 3(3): p. 732-744.
20. Zhao, L.F., et al., Hard Carbon Anodes: Fundamental Understanding and Commercial Perspectives for Na‐Ion Batteries beyond Li‐Ion and K‐Ion Counterparts. Advanced Energy Materials, 2020. 11(1).
21. Chen, K.H., et al., Enabling 6C Fast Charging of Li‐Ion Batteries with Graphite/Hard Carbon Hybrid Anodes. Advanced Energy Materials, 2020. 11(5).
22. Dedryvère, R., et al., Electrode/Electrolyte Interface Reactivity in High-Voltage Spinel LiMn1.6Ni0.4O4/Li4Ti5O12 Lithium-Ion Battery. The Journal of Physical Chemistry C, 2010. 114(24): p. 10999-11008.
23. Qi, Y., et al., Recent progress of structural designs of silicon for performance-enhanced lithium-ion batteries. Chemical Engineering Journal, 2020. 397.
24. Julien, C., et al., Lithium Batteries, in Lithium Batteries. 2016. p. 29-68.
25. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev, 2004. 104(10): p. 4303-417.
26. Jung, R., et al., Chemical versus Electrochemical Electrolyte Oxidation on NMC111, NMC622, NMC811, LNMO, and Conductive Carbon. J Phys Chem Lett, 2017. 8(19): p. 4820-4825.
27. Qi, X., et al., Influence of Thermal Treated Carbon Black Conductive Additive on the Performance of High Voltage Spinel Cr-Doped LiNi0.5Mn1.5O4Composite Cathode Electrode. Journal of The Electrochemical Society, 2014. 162(3): p. A339-A343.
28. Kawamura, T., et al., Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells. Journal of Power Sources, 2002. 104(2): p. 260-264.
29. Wang, C.-C., et al., Advanced Carbon Cloth as Current Collector for Enhanced Electrochemical Performance of Lithium-Rich Layered Oxide Cathodes. ChemistrySelect, 2017. 2(16): p. 4419-4427.
30. Yamada, M., et al., Review of the Design of Current Collectors for Improving the Battery Performance in Lithium-Ion and Post-Lithium-Ion Batteries. Electrochem, 2020. 1(2): p. 124-159.
31. Zhu, P., et al., A review of current collectors for lithium-ion batteries. Journal of Power Sources, 2021. 485.
32. Zhu, X., T. Schulli, and L. Wang, Stabilizing High-voltage Cathode Materials for Next-generation Li-ion Batteries. Chemical Research in Chinese Universities, 2020. 36(1): p. 24-32.
33. Yoon, T., et al., Failure mechanisms of LiNi0.5Mn1.5O4 electrode at elevated temperature. Journal of Power Sources, 2012. 215: p. 312-316.
34. Pieczonka, N.P.W., et al., Lithium Polyacrylate (LiPAA) as an Advanced Binder and a Passivating Agent for High-Voltage Li-Ion Batteries. Advanced Energy Materials, 2015. 5(23).
35. Wang, Z., et al., CMC as a binder in LiNi0.4Mn1.6O4 5V cathodes and their electrochemical performance for Li-ion batteries. Electrochimica Acta, 2012. 62: p. 77-83.
36. Zhang, S.S., A review on the separators of liquid electrolyte Li-ion batteries. Journal of Power Sources, 2007. 164(1): p. 351-364.
37. Zou, Z., et al., Electrolyte Therapy for Improving the Performance of LiNi0.5Mn1.5O4 Cathodes Assembled Lithium-Ion Batteries. ACS Appl Mater Interfaces, 2020. 12(19): p. 21368-21385.
38. Wang, H., LiNi0.5Mn1.5O4 Cathodes for Lithium Ion Batteries: A Review. J Nanosci Nanotechnol, 2015. 15(9): p. 6883-90.
39. Campion, C.L., W. Li, and B.L. Lucht, Thermal Decomposition of LiPF[sub 6]-Based Electrolytes for Lithium-Ion Batteries. Journal of The Electrochemical Society, 2005. 152(12).
40. Yi, T.-F., J. Mei, and Y.-R. Zhu, Key strategies for enhancing the cycling stability and rate capacity of LiNi0.5Mn1.5O4 as high-voltage cathode materials for high power lithium-ion batteries. Journal of Power Sources, 2016. 316: p. 85-105.
41. Pieczonka, N.P.W., et al., Understanding Transition-Metal Dissolution Behavior in LiNi0.5Mn1.5O4High-Voltage Spinel for Lithium Ion Batteries. The Journal of Physical Chemistry C, 2013. 117(31): p. 15947-15957.
42. Hwang, T., et al., Surface-modified carbon nanotube coating on high-voltage LiNi0.5Mn1.5O4 cathodes for lithium ion batteries. Journal of Power Sources, 2016. 322: p. 40-48.
43. Gao, X.-W., et al., Improving the electrochemical performance of the LiNi0.5Mn1.5O4spinel by polypyrrole coating as a cathode material for the lithium-ion battery. Journal of Materials Chemistry A, 2015. 3(1): p. 404-411.
44. Liu, M., et al., Hydrolysis of LiPF6-Containing Electrolyte at High Voltage. ACS Energy Letters, 2021. 6(6): p. 2096-2102.
45. Xu, K., Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev, 2014. 114(23): p. 11503-618.
46. Schultz, C., et al., Quantitative investigation of the decomposition of organic lithium ion battery electrolytes with LC-MS/MS. RSC Advances, 2017. 7(45): p. 27853-27862.
47. Lee, K., et al., Composite coating of Li2O–2B2O3 and carbon as multi-conductive electron/Li-ion channel on the surface of LiNi0.5Mn1.5O4 cathode. Journal of Power Sources, 2017. 365: p. 249-256.
48. Myung, S.-T., et al., Electrochemical behavior of current collectors for lithium batteries in non-aqueous alkyl carbonate solution and surface analysis by ToF-SIMS. Electrochimica Acta, 2009. 55(1): p. 288-297.
49. Kanamura, K., et al. , Electrochemical oxidation of propylene carbonate (containing various salts) on aluminium electrodes. Journal of power sources, 1995. 57.1-2: p. 119-123.
50. Streipert, B., et al., Influence of LiPF6on the Aluminum Current Collector Dissolution in High Voltage Lithium Ion Batteries after Long-Term Charge/Discharge Experiments. Journal of The Electrochemical Society, 2017. 164(7): p. A1474-A1479.
51. Guo, J., A. Sun, and C. Wang, A porous silicon–carbon anode with high overall capacity on carbon fiber current collector. Electrochemistry Communications, 2010. 12(7): p. 981-984.
52. Chen, P.-C., et al., Hybrid silicon-carbon nanostructured composites as superior anodes for lithium ion batteries. Nano Research, 2010. 4(3): p. 290-296.
53. Li, Z.H., et al., A new battery process technology inspired by partially carbonized polymer binders. Nano Energy, 2020. 67.
54. Chen, L., et al., PVP-Assisted Synthesis of Uniform Carbon Coated Li2S/CB for High-Performance Lithium-Sulfur Batteries. ACS Appl Mater Interfaces, 2015. 7(46): p. 25748-56.
55. Ding, X., et al., An Ultra-Long-Life Lithium-Rich Li1.2 Mn0.6 Ni0.2 O2 Cathode by Three-in-One Surface Modification for Lithium-Ion Batteries. Angew Chem Int Ed Engl, 2020. 59(20): p. 7778-7782.
56. Bosch-Navarro, C., et al., Influence of the pH on the synthesis of reduced graphene oxide under hydrothermal conditions. Nanoscale, 2012. 4(13): p. 3977-82.
57. Miao, Q., et al., Effect of defects controlled by preparation condition and heat treatment on the ferromagnetic properties of few-layer graphene. Sci Rep, 2017. 7(1): p. 5877.
58. Jo, N.-B., J.-S. Baek, and E.-S. Kim, The Effect of PVA Binder Solvent Composition on the Microstructure and Electrical Properties of 0.98BaTiO3-0.02(Ba0.5Ca0.5)SiO3 Doped with Dy2O3. Processes, 2021. 9(11).
59. Bockholt, H., W. Haselrieder, and A. Kwade, Intensive powder mixing for dry dispersing of carbon black and its relevance for lithium-ion battery cathodes. Powder Technology, 2016. 297: p. 266-274.
60. Cinquino, M., et al., Effect of surface tension and drying time on inkjet-printed PEDOT:PSS for ITO-free OLED devices. Journal of Science: Advanced Materials and Devices, 2022. 7(1).
61. Xu, J., W. Wang, and A. Wang, Dispersion of palygorskite in ethanol–water mixtures via high-pressure homogenization: Microstructure and colloidal properties. Powder Technology, 2014. 261: p. 98-104.
62. Sung, S.H., et al., Role of PVDF in Rheology and Microstructure of NCM Cathode Slurries for Lithium-Ion Battery. Materials (Basel), 2020. 13(20).
63. Park, K.-J., et al., Improved Cycling Stability of Li[Ni0.90Co0.05Mn0.05]O2 Through Microstructure Modification by Boron Doping for Li-Ion Batteries. Advanced Energy Materials, 2018. 8(25).
64. Zheng, J., et al., Surface and structural stabilities of carbon additives in high voltage lithium ion batteries. Journal of Power Sources, 2013. 227: p. 211-217.
65. Chung, D.-W., et al., Particle Size Polydispersity in Li-Ion Batteries. Journal of The Electrochemical Society, 2014. 161(3): p. A422-A430.
66. Hasanpoor, M., et al., Morphological Evolution and Solid-Electrolyte Interphase Formation on LiNi0.6Mn0.2Co0.2O2 Cathodes Using Highly Concentrated Ionic Liquid Electrolytes. ACS Appl Mater Interfaces, 2022. 14(11): p. 13196-13205.
67. J. Z. Li Wang, X.H., Jian Gao, Jianjun Li, Chunrong Wan, Changyin Jiang, Electrochemical Impedance Spectroscopy (EIS) Study of LiNi1/3Co1/3Mn1/3O2 for Li-ion Batteries. Int. J. Electrochem. Sci., 2012: p. 345-353.
68. Salleh, W.N.W. and A.F. Ismail, Effects of carbonization heating rate on CO2 separation of derived carbon membranes. Separation and Purification Technology, 2012. 88: p. 174-183.
69. Wu, J., et al., Mechanistic insights into formation of SnO(2) nanotubes: asynchronous decomposition of poly(vinylpyrrolidone) in electrospun fibers during calcining process. Langmuir, 2014. 30(37): p. 11183-9.
70. Pindar, S. and N. Dhawan, Evaluation of carbothermic processing for mixed discarded lithium-ion batteries. Metallurgical Research & Technology, 2020. 117(3).
71. El-Batal, A.I., et al., Antibiofilm and Antimicrobial Activities of Silver Boron Nanoparticles Synthesized by PVP Polymer and Gamma Rays Against Urinary Tract Pathogens. Journal of Cluster Science, 2019. 30(4): p. 947-964.
72. Rahma, A., et al., Intermolecular Interactions and the Release Pattern of Electrospun Curcumin-Polyvinyl(pyrrolidone) Fiber. Biological and Pharmaceutical Bulletin, 2016. 39(2): p. 163-173.
73. Marshall, S.J., et al., A review of adhesion science. Dent Mater, 2010. 26(2): p. e11-6.
74. Choi, Y.C., et al., Poly(azomethine ether)‐derived carbon nanofibers for self‐standing and binder‐free supercapacitor electrode material applications. Polymers for Advanced Technologies, 2020. 31(11): p. 2874-2883.
75. Zhao, J., et al., Nitrogen-doped carbon with a high degree of graphitization derived from biomass as high-performance electrocatalyst for oxygen reduction reaction. Applied Surface Science, 2017. 396: p. 986-993.
76. Liu, Y.-H., et al., Elucidating the function of modified carbon blacks in high-voltage lithium-ion batteries: impact on electrolyte decomposition. Materials Today Chemistry, 2022. 25.
指導教授 劉奕宏(Yi-Hung Liu) 審核日期 2022-9-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明