博碩士論文 109324043 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:44.220.247.152
姓名 陳韻庭(Yun-Ting Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用變壓吸附法分離CO2甲烷化產氣之模擬暨實驗設計研究
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬
★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬
★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬
★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬
★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬
★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 鑒於全球暖化日益嚴重,及再生能源發電中棄風棄光現象造成能源大量浪費的問題,因此電轉氣(Power to Gas, P2G)為目前歐盟所積極推動的儲能技術。此技術以電解水來產生氫氣,藉利用水電解產生的氫氣和二氧化碳進行甲烷化反應,為了使氫氣不被浪費,甲烷化反應中常會以二氧化碳過量的方式來進行,經反應後,產物組成為二氧化碳、甲烷及乙烷。
本研究模擬探討以變壓吸附法(pressure swing adsorption, PSA)進行CO2甲烷化反應後之氣體高純度純化分離,依據文獻資料擇定以沸石13X做為吸附劑。隨後,本研究以程序模擬結合實驗設計(design of experiment, DOE),找出以進料條件為67.9%甲烷、30%二氧化碳及2.1%乙烷時之三塔九步驟PSA程序之分離最適化操作條件,經分析後,最佳化程序可使塔頂輕產物甲烷純度95.91%、回收率97.93%,塔底重產物二氧化碳純度90.27%、回收率90.47%。
摘要(英) In view of serious global warming problem and the massive energy waste in renewable energy, power-to-gas (P2G) is currently an energy storage technology actively promoted by the European Union. The P2G technology uses green energy or off-peak residual electricity with a low-energy amphoteric membrane to electrolyze water to produce hydrogen and oxygen. In addition, the captured and desorbed high-purity carbon dioxide is hydrogenated with hydrogen into high-purity methane through a catalyst. Moreover, the methanation reaction often reacts with excess carbon dioxide. After the reaction, the gas composition is carbon dioxide, methane, ethane and a small amount of hydrogen.
In this research, the pressure swing adsorption (PSA) process was applied to purify carbon dioxide and methane from the product gases from CO2 methanation. By simulation study, the adsorbent is chosen based on literature, and the sorbent parameters were calculated from experimental data of the adsorption equilibrium curve. We used 13X zeolite as adsorbent due to its high CO2/CH4 selectivity. The PSA process simulation combined with the design of experiments (DOE) is used to find out the optimal operating conditions for the separation of the three-component feed which contained 67.9% CH4, 2.1% C2H6 and 30% CO2. After analysis, the optimal operating conditions of a three-bed nine-step PSA process were obtained to produce a top product at 95.91% methane purity with 97.93 % recovery, and a bottom product at 90.27% carbon dioxide purity with 90.47 % recovery.
關鍵字(中) ★ 變壓吸附
★ 二氧化碳
★ 甲烷
關鍵字(英) ★ Pressure swing adsorption
★ Carbon dioxide
★ Methane
論文目次 摘要 i
Abstract ii
誌謝 iii
圖目錄 vii
表目錄 ix
第一章、緒論 1
第二章、簡介及文獻回顧 3
2-1 吸附之簡介 3
2-1-1 吸附之基本原理 3
2-1-2 吸附劑之選擇性 4
2-1-3 吸附程序 6
2-1-4 突破曲線 7
2-2 研究目的及文獻回顧 9
2-2-1 PSA程序之發展與改進 9
2-2-2 理論之回顧 12
2-2-3 用於甲烷化反應後氣體分離之吸附劑之回顧 14
第三章、假設及理論 17
3-1 基本假設 17
3-2 統制方程式 18
3-3 吸附平衡關係式 21
3-3-1 等溫吸附平衡關係式 21
3-3-2 質傳驅動力模式(Driving force model) 21
3-3-3 吸附熱關係式 21
3-4 參數推導 22
3-4-1 軸向分散係數(Axial dispersion coefficient) 22
3-4-2 熱傳係數 24
3-4-3 線性驅動力質傳係數(Mass transfer coefficient of linear driving force) 26
3-5 邊界條件與流速 29
3-5-1 邊界條件與節點流速 29
3-5-2 閥公式 29
3-6 求解步驟 30
3-8 產率計算 32
第四章、模擬程序所需參數與驗證 33
4-1 雙塔六步驟製程描述 33
4-2 模擬驗證所需參數 34
4-3 模擬驗證結果 36
第五章、雙塔八步驟之甲烷化氣體分離程序 37
5-1 吸附劑吸附能力比較 37
5-1-1 吸附劑吸附數據蒐集 37
5-1-2 吸附劑之選擇率計算結果與比較 40
5-2 雙塔八步驟PSA製程描述 42
5-3 模擬所需參數 44
5-3-1 氣體與吸附劑性質 44
5-3-2 等溫平衡吸附取線 45
5-4 雙塔八步驟PSA模擬結果與分析 47
第六章、三塔九步驟之甲烷化氣體分離程序 49
6-1 製程描述 49
6-2 模擬結果與分析 51
第七章、以實驗設計求最佳化結果 56
7-1 因子選定 56
7-2 變異數分析(Analysis of Variance, ANOVA) 59
7-2-1 殘差分析圖(Analysis of residual plots) 68
7-2-2 回歸分析(Regression analysis) 71
7-3 各響應組合之最佳化結果 73
7-3-1 以甲烷及二氧化碳高純度為目標 73
7-3-2 以提升二氧化碳回收率為目標 79
7-4 以模擬程序驗證實驗設計之最佳化結果 82
第八章、結論 85
符號說明 86
參考文獻 90
附錄A、流速之估算方法 97
附錄B、ANOVA全因子設計之各響應值 100
參考文獻 [1] Fraunhofer Institute for Solar Energy Systems, Power to Gas. Available from: https://www.ise.fraunhofer.de/en/business-areas/hydrogen-technologies-and-electrical-energy-storage/electrolysis-and-power-to-gas/power-to-gas.html.
[2] R. Augelletti, M. Conti, and M.C. Annesini, Pressure swing adsorption for biogas upgrading. A new process configuration for the separation of biomethane and carbon dioxide, Journal of Cleaner Production, 140, pp. 1390-1398, 2017.
[3] S. Sircar, Pressure swing adsorption, Industrial & engineering chemistry research, 41(6), pp. 1389-1392, 2002.
[4] M.P. Santos, C.A. Grande, and A.r.E. Rodrigues, Pressure swing adsorption for biogas upgrading. Effect of recycling streams in pressure swing adsorption design, Industrial & engineering chemistry research, 50(2), pp. 974-985, 2011.
[5] 張鈞翔, 利用真空變壓吸附法捕獲發電廠煙道氣中二氧化碳之三塔實驗設計分析模擬研究, 國立中央大學碩士論文, 2020.
[6] R.T. Yang, Gas separation by adsorption processes, World Scientific, 1997.
[7] R.T. Yang, Adsorbents: fundamentals and applications, John Wiley & Sons, 2003.
[8] S.U. Rege and R.T. Yang, A simple parameter for selecting an adsorbent for gas separation by pressure swing adsorption, Separation science and technology, 36(15), pp. 3355-3365, 2001.
[9] A. Agarwal, Advanced strategies for optimal design and operation of pressure swing adsorption processes, Carnegie Mellon University, 2010.
[10] W. H. McAdams, Heat Transmission, 3rd ed., New York: McGraw-Hill, 1954.
[11] C.W. Skarstrom, Method and apparatus for fractionating gaseous mixtures by adsorption, 1960.
[12] A.E. Rodrigues, M.D. LeVan, and D. Tondeur, Adsorption: Science and technology, vol. 158, Springer Science & Business Media, 2012.
[13] W.-K. Choi, et al., Optimal operation of the pressure swing adsorption (PSA) process for CO2 recovery, Korean Journal of Chemical Engineering, 20(4), pp. 617-623, 2003.
[14] M.P.G. De and D. Daniel, Process for separating a binary gaseous mixture by adsorption, Google Patents, 1964.
[15] P.E. Jahromi, et al., Purification of helium from a cryogenic natural gas nitrogen rejection unit by pressure swing adsorption, Separation and Purification Technology, 193, pp. 91-102, 2018.
[16] B.-K. Na, et al., Effect of rinse and recycle methods on the pressure swing adsorption process to recover CO2 from power plant flue gas using activated carbon, Industrial & engineering chemistry research, 41(22), pp. 5498-5503, 2002.
[17] R. Yang and S. Doong, Gas separation by pressure swing adsorption: A pore‐diffusion model for bulk separation, AIChE Journal, 31(11), pp. 1829-1842, 1985.
[18] L. Jiang, V.G. Fox, and L.T. Biegler, Simulation and optimal design of multiple‐bed pressure swing adsorption systems, AIChE Journal, 50(11), pp. 2904-2917, 2004.
[19] E. Rudelstorfer and A. Fuderer, Selective Adsorption Process, U.S. Patent no.3986849, 1976.
[20] P.H. Turnock and R.H. Kadlec, Separation of nitrogen and methane via periodic adsorption, AIChE Journal, 17(2), pp. 335-342, 1971.
[21] S. Farooq and D.M. Ruthven, Heat effects in adsorption column dynamics. 2. Experimental validation of the one-dimensional model, Industrial & engineering chemistry research, 29(6), pp. 1084-1090, 1990.
[22] E. Glueckauf and J. Coates, 241. Theory of chromatography. Part IV. The influence of incomplete equilibrium on the front boundary of chromatograms and on the effectiveness of separation, Journal of the Chemical Society (Resumed), pp. 1315-1321, 1947.
[23] H.H. Heck, et al., Pressure swing adsorption separation of H2S/CO2/CH4 gas mixtures with molecular sieves 4A, 5A, and 13X, Separation Science and Technology, 53(10), pp. 1490-1497, 2018.
[24] F. Gholipour and M. Mofarahi, Adsorption equilibrium of methane and carbon dioxide on zeolite 13X: Experimental and thermodynamic modeling, The Journal of Supercritical Fluids, 111, pp. 47-54, 2016.
[25] M. Mofarahi and S.M. Salehi, Pure and binary adsorption isotherms of ethylene and ethane on zeolite 5A, Adsorption, 19(1), pp. 101-110, 2013.
[26] J.A. Silva, K. Schumann, and A.E. Rodrigues, Sorption and kinetics of CO2 and CH4 in binderless beads of 13X zeolite, Microporous and Mesoporous Materials, 158, pp. 219-228, 2012.
[27] S. Cavenati, C.A. Grande, and A.E. Rodrigues, Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures, Journal of Chemical & Engineering Data, 49(4), pp. 1095-1101, 2004.
[28] J.A. Thompson, Acid gas adsorption on zeolite SSZ‐13: Equilibrium and dynamic behavior for natural gas applications, AIChE Journal, 66(10), pp. e16549, 2020.
[29] S. Hosseinpour, et al., Performance of CaX zeolite for separation of C2H6, C2H4, and CH4 by adsorption process; capacity, selectivity, and dynamic adsorption measurements, Separation Science and Technology, 46(2), pp. 349-355, 2010.
[30] C.A. Grande, et al., CO2 capture in natural gas production by adsorption processes, Energy Procedia, 114, pp. 2259-2264, 2017.
[31] C.-T. Chou and C.-Y. Chen, Carbon dioxide recovery by vacuum swing adsorption, Separation and Purification Technology, 39(1-2), pp. 51-65, 2004.
[32] S. Sircar, et al., Isosteric heat of adsorption: theory and experiment, The Journal of Physical Chemistry B, 103(31), pp. 6539-6546, 1999.
[33] C.-Y. Wen and L.-t. Fan, Models for flow systems and chemical reactors, M. Dekker, 1975.
[34] B. Bird, W. Steward, and E. Lightfoot, Transport Phenomena (revised 2nd edition) John Wiley & Sons, New York, 2007.
[35] E. Fuller and J. Giddings, A comparison of methods for predicting gaseous diffusion coefficients, Journal of Chromatographic Science, 3(7), pp. 222-227, 1965.
[36] E.N. Fuller, K. Ensley, and J.C. Giddings, Diffusion of halogenated hydrocarbons in helium. The effect of structure on collision cross sections, The Journal of Physical Chemistry, 73(11), pp. 3679-3685, 1969.
[37] D. Fairbanks and C. Wilke, Diffusion coefficients in multicomponent gas mixtures, Industrial & Engineering Chemistry, 42(3), pp. 471-475, 1950.
[38] W.L. McCabe, J.C. Smith, and P. Harriott, Unit operations of chemical engineering, vol. 5, McGraw-hill New York, 1993.
[39] N. Wakao, S. Kaguei, and T. Funazkri, Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed beds: correlation of Nusselt numbers, Chemical engineering science, 34(3), pp. 325-336, 1979.
[40] G. Carta and A. Cincotti, Film model approximation for non-linear adsorption and diffusion in spherical particles, Chemical Engineering Science, 53(19), pp. 3483-3488, 1998.
[41] W. Schirmer, Diffusion in zeolites and other microporous solids, Zeitschrift für physikalische Chemie, 186(2), pp. 269-270, 1994.
[42] M. LeVan, G. Carta, and C. Yon, Adsorption and ion exchange in Perry’s Chemical Engineers Handbook, Section 16, ed, DW Green, 7th Ed. McGrawHill, New York, 1997.
[43] K. Kawazoe, M. Suzuki, and K. Chihara, Chromatographsc stidy of diffusion in molecular-sieving carbon, Journal of chemical engineering of Japan, 7(3), pp. 151-157, 1974.
[44] H. Qinglin, S. Sundaram, and S. Farooq, Revisiting transport of gases in the micropores of carbon molecular sieves, Langmuir, 19(2), pp. 393-405, 2003.
[45] X. Hu, et al., Diffusion mechanism of CO2 in 13X zeolite beads, Adsorption, 20(1), pp. 121-135, 2014.
[46] C.A. Grande and A.E. Rodrigues, Biogas to fuel by vacuum pressure swing adsorption I. Behavior of equilibrium and kinetic-based adsorbents, Industrial & engineering chemistry research, 46(13), pp. 4595-4605, 2007.
[47] Y. Park, et al., Adsorption equilibria and kinetics of six pure gases on pelletized zeolite 13X up to 1.0 MPa: CO2, CO, N2, CH4, Ar and H2, Chemical Engineering Journal, 292, pp. 348-365, 2016.
[48] L. Sigot, et al., Comparison of adsorbents for H2S and D4 removal for biogas conversion in a solid oxide fuel cell, Environmental technology, 37(1), pp. 86-95, 2016.
[49] M.I. Hossain, et al., Mass transfer mechanisms and rates of CO2 and N2 in 13X zeolite from volumetric frequency response, Industrial & Engineering Chemistry Research, 58(47), pp. 21679-21690, 2019.
[50] P.V. Danckwerts, Continuous flow systems: distribution of residence times, Chemical engineering science, 2(1), pp. 1-13, 1953.
[51] A. Golmakani, S. Fatemi, and J. Tamnanloo, CO2 capture from the tail gas of hydrogen purification unit by vacuum swing adsorption process, using SAPO-34, Industrial & Engineering Chemistry Research, 55(1), pp. 334-350, 2016.
[52] 林柏瑋, 利用真空變壓吸附法純化生質沼氣之模擬暨實驗設計研究, 國立中央大學碩士論文, 2020.
[53] J.M. Smith, Introduction to chemical engineering thermodynamics, ACS Publications, 1950.
[54] M.J. Ahmed, A.H.A.K. Mohammed, and A.A.H. Kadhum, Experimental and theoretical studies of equilibrium isotherms for pure light hydrocarbons adsorption on 4A zeolite, Korean Journal of Chemical Engineering, 27(6), pp. 1801-1804, 2010.
[55] E. Khoramzadeh, M. Mofarahi, and C.-H. Lee, Equilibrium adsorption study of CO2 and N2 on synthesized zeolites 13X, 4A, 5A, and Beta, Journal of Chemical & Engineering Data, 64(12), pp. 5648-5664, 2019.
[56] G.-M. Nam, et al., Equilibrium isotherms of CH4, C2H6, C2H4, N2, and H2 on zeolite 5A using a static volumetric method, Journal of Chemical & Engineering Data, 50(1), pp. 72-76, 2005.
[57] S.H. Hyun and R.P. Danner, Equilibrium adsorption of ethane, ethylene, isobutane, carbon dioxide, and their binary mixtures on 13X molecular sieves, Journal of Chemical and Engineering Data, 27(2), pp. 196-200, 1982.
[58] R.P. Danner and E.C. Choi, Mixture adsorption equilibria of ethane and ethylene on 13X molecular sieves, Industrial & Engineering Chemistry Fundamentals, 17(4), pp. 248-253, 1978.
[59] R. Seabra, et al., Ethylene/ethane separation by gas-phase SMB in binderfree zeolite 13X monoliths, Chemical Engineering Science, 229, pp. 116006, 2021.
[60] S. Pu, et al., Performance comparison of metal–organic framework extrudates and commercial zeolite for ethylene/ethane separation, Industrial & Engineering Chemistry Research, 57(5), pp. 1645-1654, 2018.
[61] K. Kamatani, Efficient strategy for the Markov chain Monte Carlo in high-dimension with heavy-tailed target probability distribution, Bernoulli, 24(4B), pp. 3711-3750, 2018.
指導教授 周正堂(Cheng-Tung Chou) 審核日期 2022-9-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明