博碩士論文 109324055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:18.218.236.85
姓名 曾梓涵(Zi-Han Tseng)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱
(Development of Sustainable Reaction and Separation Processes for Amantadine and Amantadine Hydrochloride)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究
★ 蔗糖的同質異構型構★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選
★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度
★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選
★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究★ 生命的起源與天門冬氨酸在水中的結晶
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著全球人口的快速增長,高齡化和能源危機的議題,逐漸引起人們的關注。在本研究中,我們將節能減廢的概念應用於製程改進。在文獻中,合成金剛烷胺鹽酸鹽的原始方法包括三個步驟:(1)1-乙酰氨基金剛烷水解合成金剛烷胺,(2)蒸氣蒸餾方式分離得到金剛烷胺,和(3)形成鹽酸鹽。在這項研究中,我們設計和開發了一種製造金剛烷胺鹽酸鹽的強化製程。首先,將1-乙酰氨基金剛烷水解合成金剛烷胺的反應時間從24小時縮短到16小時。接著,利用金剛烷胺和副產物醋酸鈉在水中溶解度的差異,成功分離出金剛烷胺,取代了能源密集型蒸餾步驟。省去繁瑣且耗能的分離操作(即蒸汽蒸餾、萃取和溶劑去除),成功改進了合成金剛烷胺的製程,並計算得到較低數值的 E factor,為3.9。這意味著強化的製程更貼近永續發展,減少製造過程產生的浪費。在結晶步驟中加水分離出金剛烷胺時,觀察到當金剛烷胺上的伯胺與大氣二氧化碳反應時,產生金剛烷胺碳酸鹽(AC)。在過濾、沖洗濾餅和乾燥步驟研究金剛烷胺碳酸鹽的形成。在氮氣環境下乾燥金剛烷胺的濾餅可以有效防止金剛烷胺轉化為金剛烷胺碳酸鹽。為了提高金剛烷胺在水溶液中的生物利用度,分別以漿料反應結晶及反溶劑結晶製備金剛烷胺鹽酸鹽。由於漿料反應結晶法具較低的 E factor (3.4),選擇其作為成鹽步驟的手法。金剛烷胺鹽酸鹽整體製程的 E factor為7.7,遠低於原始方法的數值21.5。並且在0.5公升玻璃攪拌槽中進行了製程放大,總產率高達82.9%,本研究具有在製程中縮短反應時間、節約能源和減少廢物產生等特點。
摘要(英) The rapid growth of the global population, aging and energy crisis have gradually captured the people’s attention. The concept of energy saving and waste reduction had been applied to process enhancement in the present study. In the literature, the original production of amantadine HCl included three steps: (1) hydrolysis of 1-acetamidoadamantane to synthesize amantadine, (2) steam distillation, and (3) salt formation. In this study, an intensified process of making amantadine HCl had been designed and developed. Firstly, the reaction time for the synthesis of amantadine by hydrolyzing 1-acetamidoadamantane was shortened from 24 to 16 h. The energy-intensive distillation step had been replaced by the direct separation of amantadine from sodium acetate, based on the difference in their solubilities in water. The intensified process for the synthesis of amantadine had been developed to get rid of a series of tedious and energy-intensive separation operations (i.e. steam distillation, extraction, and solvent removal). A much smaller E factor of 3.9 had been obtained, meaning that the intensified process was more sustainable with minimized waste generation. After the water addition in the crystallization step, it was observed that amantadine carbonate (AC) is produced when the primary amine of amantadine reacted with the atmospheric CO2. The formation of AC was investigated upon filtration, cake rinsing, and drying. Amantadine wet cake was dried under a nitrogen atmosphere to prevent the conversion of amantadine to AC. To increase the bioavailability of amantadine in an aqueous solution, it was further prepared as a HCl salt by slurry reactive crystallization and antisolvent crystallization, respectively. The slurry reactive crystallization was selected by achieving a lower E factor of 3.4. The overall E-factor became 7.7, much lower than the original method of 21.5. This intensified process has been scaled up in a 0.5 L-stirred tank, which showed an improved overall yield of 82.9%, and provided some significant features, such as the shortening of reaction time, saving of energy, and waste minimization.
關鍵字(中) ★ 金剛烷胺
★ 金剛烷胺鹽酸鹽
★ 分離過程
★ 永續的
關鍵字(英) ★ Amantadine
★ Amantadine Hydrochloride
★ Separation Process
★ Sustainable
論文目次 摘要 i
Abstract ii
Acknowledgement iv
Table of Contents v
List of Figures viii
List of Tables xiii
List of Schemes xiv
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Salt Formation of Amantadine and its Medications 6
1.3 The Conventional Processes 8
1.4 Conceptual Framework 10
Chapter 2 Materials and Experiments 12
2.1 Materials 12
2.1.1 Chemicals 12
2.1.2 Solvents 12
2.2 Experiments 15
2.2.1 Initial Solvent Screening 15
2.2.2 Solubility Test 15
2.2.3 Preparation of the Single Crystals of Amantadine Carbonate (AC) 16
2.2.4 Preparation of the Single Crystals of Amantadine Hydrochloride • 1/2 Benzyl Alcohol Solvate 16
2.2.5 Synthesis of Amantadine 17
2.2.6 Separation and Crystallization of Amantadine after the Synthesis 18
2.2.7 Integrated Synthesis and Crystallization of Amantadine 19
2.2.8 Prevention of the AC Formation upon Filtration, Cake Rinsing, and Drying 20
2.2.9 Synthesis of Amantadine Hydrochloride 21
2.2.10 Instrumental Analysis 24
2.2.10.1 Fourier Transform Infrared Spectroscopy 24
2.2.10.2 Optical Microscopy 24
2.2.10.3 Powder X-ray Diffraction 24
2.2.10.4 Single-crystal X-ray Diffraction 25
2.2.10.5 Thermal Gravimetric Analysis 25
2.2.10.6 Differential Scanning Calorimetry 25
2.2.10.7 Nuclear Magnetic Resonance 26
Chapter 3 Results and Discussion 27
3.1 Initial Solvent Screening 27
3.2 Amantadine Carbonate Salt (AC) 33
3.3 Amantadine Hydrochloride • 1/2 Benzyl Alcohol Solvate 40
3.4 Synthesis of Amantadine 50
3.5 Separation and Crystallization of Amantadine after Hydrolysis 54
3.6 Integrated Synthesis and Crystallization of Amantadine 60
3.7 Prevention of the AC Formation upon Filtration, Cake Rinsing, and Drying 66
3.8 Synthesis of Amantadine Hydrochloride 70
Chapter 4 Conclusions and Future Works 83
4.1 Conclusions 83
4.2 Future Works 85
References 87
參考文獻 1. Hannah Ritchie, Max Roser and Pablo Rosado (2020) - "Energy". Published online at OurWorldInData.org. Retrieved from: ′https://ourworldindata.org/energy′ [Online Resource] (accessed April 19, 2022)
2. Hannah Ritchie, Max Roser and Pablo Rosado (2020) - "CO₂ and Greenhouse Gas Emissions". Published online at OurWorldInData.org. Retrieved from: ′https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions′ [Online Resource] (accessed April 19, 2022)
3. Ludomier, G. W.; Elliott, P. Method for Recovering and Refining Cyclopentadiene. US Patent 2,349,418, May. 23, 1944.
4. Claus, M.; Claus, E.; Claus, P.; Hönicke, D.; Födisch, R.; Olson, M. Cyclopentadiene and Cyclopentene. Ullmann′s Encyclopedia of Industrial Chemistry. Wiley-VCH. 2002. p. 61-73.
5. Schleyer, P. von R. A Simple Preparation of Adamantane. J. Am. Chem. Soc. 1957, 79 (12), 3292-3292.
6. Schleyer, P. von R.; Donaldson, M. M.; Nicholas, R. D.; Cupas, C. Adamantane. Org. Synth. 1962, 42, 8.
7. Sasaki, T.; Eguchi, S.; Toru, T. Synthesis of Adamantane Derivatives. I. Application of the Ritter Reaction to 1-Bromoadamantane. Bull. Chem. Soc. Jpn. 1968, 41 (1), 236-238.
8. SarmaPathy, K. Recent Advances in Process Development of Antiviral Agents Targeting the Influenza Virus: Amantadine-Remantadine-Derived Pharmaceutical Agents. Timely Top Clin Vaccines Res. 2018, 2 (2), 11-15.
9. Moiseev, I. K.; Doroshenko, R. I.; Ivanova, V. I. Synthesis of Amantadine via the Nitrate of 1-Adamantanol. Khim. -Farm. Zh. 1976, 10 (4), 32−33.
10. Smith, G. W.; Williams, H. D. Some Reactions of Adamantane and Adamantane Derivatives. J. Org. Chem. 1961, 26 (7), 2207-2212.
11. He, J. X.; Wang H. B.; Zhou, H. Y. Synthesis of Amantadine Hydrochloride. Chinese J. Pharm. 2013, 44 (1), 1-3.
12. Sönnichsen, N. Primary Energy Consumption Worldwide from 2000 to 2020 https://www.statista.com/statistics/265598/consumption-of-primary-energy-worldwide/ (accessed April 19, 2022)
13. Welton, T. Solvents and Sustainable Chemistry. Proc. R. Soc. A: Math. Phys. Eng. Sci. 2015, 471(2183).
14. Sheldon, R. A. The E Factor: Fifteen Years On. Green Chem. 2007, 9(12), 1273-1283.
15. Sheldon, R. A. The E Factor 25 Years on: The Rise of Green Chemistry and Sustainability. Green Chem. 2017, 19(1), 18-43.
16. Manahan, S. E. The E-Factor in Green Chemistry https://chem.libretexts.org/ (accessed May 5, 2022)
17. Amantadine: MedlinePlus Drug Information
https://medlineplus.gov/druginfo/meds/a682064.html (accessed May 5, 2022)
18. Indurkhya, A.; Patel, M.; Sharma, P.; Abed, S. N.; Shnoudeh, A.; Maheshwari, R.; Deb, P. K.; Tekade, R. K. Influence of Drug Properties and Routes of Drug Administration on the Design of Controlled Release System. Dosage form design considerations. Academic Press, 2018, p. 179-223.
19. Türeli, N. G., & Türeli, A. E. Industrial Perspectives and Future of Oral Drug Delivery. Nanotechnol. for Oral Drug Deliv. Academic Press, 2020, p. 483-502.
20. Gupta, D.; Bhatia, D.; Dave, V.; Sutariya, V.; Varghese Gupta, S. Salts of Therapeutic Agents: Chemical, Physicochemical, and Biological Considerations. Molecules 2018, 23(7), 1719.
21. Savjani, K. T.; Gajjar, A. K.; Savjani, J. K. Drug Solubility: Importance and Enhancement Techniques. Int. Sch. Res. Notices 2012.
22. Serajuddin, A. T. Salt formation to Improve Drug Solubility. Adv. Drug Deliv. Rev. 2007, 59(7), 603-616.
23. Fasinu, P.; Pillay, V.; Ndesendo, V. M.; du Toit, L. C.; Choonara, Y. E. Diverse Approaches for the Enhancement of Oral Drug Bioavailability. Biopharm. drug dispos. 2011, 32(4), 185-209.
24. Bharate, S. S. Recent Developments in Pharmaceutical Salts: FDA Approvals from 2015 to 2019. Drug Discov. Today 2021, 26(2), 384-398.
25. Nisar, T.; Sutherland-Foggio, H.; Husar, W. Antiviral Amantadine. Lancet Neurol. 2019, 18(12), 1080.
26. Suzuki, H.; Saito, R.; Masuda, H.; Oshitani, H.; Sato, M.; Sato, I. Emergence of Amantadine-Resistant Influenza A Viruses: Epidemiological Study. J. Infect. Chemother. 2003, 9(3), 195-200.
27. Vardanyan, R.; Hruby, V. Synthesis of essential drugs. Elsevier, 2006.
28. N. Maserejian, L.; Vinikoor-Imler, A. Dilley. Estimation of the 2020 Global Population of Parkinson’s Disease (PD). Mov Disord. 2020; 35
29. Tong, Y. Y.; Wang, J. China Production: Year to Date: Amantadine Hydrochloride ‘https://www.ceicdata.com/’ (accessed July 21, 2022)
30. Strides Pharma arm gets USFDA nod to market Amantadine Hydrochloride Softgel Capsules in America https://economictimes.indiatimes.com/industry/healthcare/biotech/pharmaceuticals/strides-pharma-arm-gets-usfda-nod-to-market-amantadine-hydrochloride-softgel-capsules-in-america/articleshow/89720391.cms (accessed July 21, 2022)
31. Stetter, H.; Mayer, J.; Schwarz, M.; Wulff, K. Beiträge zur Chemie der Adamantyl-(1)-Derivate. Chem Ber, 1960, 93(1), 226-230.
32. Wolfgang, H. Process for the Production of N-tert. Alkyl Amides and, if Desired, N-tert. Alkyl Amines. US Patent 3,152,180. Oct. 6, 1964.
33. Leonova, M. V.; Skomorokhov, M. Y.; Moiseev, I. K.; Klimochkin, Y. N. One-Pot Amination of Cage Hydrocarbons. Russ. J. Org. Chem. 2015, 51(12), 1703-1709.
34. Van Nguyen, T.; Van Pham, H.; Vu, D. B.; Dang, A. T.; Tran, V. K.; Phan, C. D. Microwave Method for the Synthesis of Amantadine Hydrochloride. Chiang Mai J. Sci. 2018, 45(6), 2454-2458.
35. Vu, D. B.; Nguyen, T. V.; Le, S. T.; Phan, C. D. An Improved Synthesis of Amantadine Hydrochloride. Org. Process Res. Dev. 2017, 21(11), 1758-1760.
36. Brown, R. L.; Snyder, J. A. 1-Aminoadamantane and Process for Purifying Same. US Patent 3,283,001, Nov. 1, 1966.
37. Marvin, P.; Watts, J. C. Pharmaceutical Compositions and Methods Utilizing 1-Aminoadamantane and Its Derivatives. US Patent 3,310,469. Mar. 21, 1967.
38. Kraus, G. A. Method for the Synthesis of Adamantane Amines. US Patent 5,599,998. Feb. 4, 1997.
39. Jack, M.; Eriks, K. Adamantyl Secondary Amines. US Patent 3,391,142. Jul. 2, 1968.
40. Phan, D. C.; Nguyen, H. T. A Simple and Economical Procedure for Synthesis of Amantadine Hydrochloride. Int. J. Pharm. Sci. Res. 2019, 10(9) 4359-4366.
41. Pham, V. H.; Tran, T. H.; Vu, B. D.; Le, H. B.; Nguyen, H. T.; Phan, D. C. A Simple Process for the Synthesis of 1-Aminoadamantane Hydrochloride. Org. Prep. Proced. Int. 2020, 52(1), 77-80.
42. Phan Thi, P. D.; Dang, T. A.; Vu, B. D.; Phan, D. C. Simple and Economical Process for Producing Amantadine Hydrochloride. ACS omega 2022, 7(6), 4787-4790.
43. Vincent, C. W.; Bruce, A. R. Method of Preparing 1-Adamantanamine. US Patent 3,388,164. Jun. 11, 1968.
44. Jirgensons, A.; Kauss, V.; Kalvinsh, I.; Gold, M. R. A Practical Synthesis of Tert-alkyl Amines via the Ritter Reaction with Chloroacetonitrile. Synthesis 2000, 2000(12), 1709-1712.
45. Schickaneder, C. P. Process for the Preparation of Adamantanamines. US Patent 2009/0082596 A1. Mar. 26, 2009.
46. Tsutsui, H.; Ichikawa, T.; Narasaka, K. Preparation of Primary Amines by the Alkylation of O-sulfonyloximes of Benzophenone Derivatives with Grignard Reagents. Bull. Chem. Soc. Jpn. 1999, 72(8), 1869-1878.
47. Kitamura, M.; Chiba, S.; Narasaka, K. Synthesis of Primary Amines and N-methylamines by the Electrophilic Amination of Grignard Reagents with 2-Imidazolidinone O-sulfonyloxime. Bull. Chem. Soc. Jpn. 2003, 76(5), 1063-1070.
48. Kitamura, M.; Suga, T.; Chiba, S.; Narasaka, K. Synthesis of Primary Amines by the Electrophilic Amination of Grignard Reagents with 1,3-dioxolan-2-one O-sulfonyloxime. Org. Lett. 2004, 6(24), 4619-4621.
49. Zhang, Z. Chinese Patent 102050744B, Jan. 23, 2011.
50. Hudson, A. E.; Herold, K. F.; Hemmings Jr, H. C. Pharmacology of Inhaled Anesthetics. Pharmacology and physiology for anesthesia, Elsevier, 2019, p. 217-240.
51. Lee, T.; Kuo, C. S. Solubility, Polymorphism, Crystallinity, and Crystal Habit of Acetaminophen and Ibuprofen. Pharm. Technol. 2006, 30(10), 72-87.
52. Khanna, R. K.; Moore, M. H. Carbamic Acid: Molecular Structure and IR Spectra. Spectrochim. Acta, Part A 1999, 55(5), 961-967.
53. Schaden, S.; Haberkorn, M.; Frank, J.; Baena, J. R.; Lendl, B. Direct Determination of Carbon Dioxide in Aqueous Solution Using Mid-infrared Quantum Cascade Lasers. Appl. Spectrosc. 2004, 58(6), 667-670.
54. Colthup, N. B.; Daly, L. H.; Wiberley S. E. Introduction to Infrared and Raman Spectroscopy, 3rd ed.; Harcourt Brace Jovanovich: San Diego, 1990
55. Wu, J. K.; Yin, M. J.; Han, W.; Wang, N.; An, Q. F. Development of High-performance Polyelectrolyte-complex-nanoparticle-based Pervaporation Membranes via Convenient Tailoring of Charged Groups. J. Mater. Sci. 2020, 55(26), 12607-12620.
56. Le Pevelen, D. D. Small Molecule X-Ray Crystallography, Theory and Workflow. 2010, p.2559-2576.
57. Lee, T.; Lee, Y.; Lee, H. L.; Syue, Y. R.; Chiu, Y. H.; Liou, J. Y.; Sun, Y. S. Bio-Inspired Phase Change Materials Designed for High Specific Heat of Solid Phase. Thermochim. Acta. 2014, 591, 61-67.
58. Plançon, A. New Modeling of X-ray Diffraction by Disordered Lamellar Structures, Such as Phyllosilicates. Am. Mineral. 2002, 87(11-12), 1672-1677.
59. Weeks, J. J. Melting Temperature and Change of Lamellar Thickness with Time for Bulk Polyethylene. J. Res. Natl. Inst. Stand. Technol. 1963, 67(5), 441.
60. Lee, H. L.; Cheng, Y. S.; Yeh, K. L.; Lee, T. A Novel Hydrate Form of Sodium Dodecyl Sulfate and Its Crystallization Process. ACS omega 2021, 6(24), 15770-15781.
61. Noeres, C.; Kenig, E. Y.; Górak, A. Modelling of Reactive Separation Processes: Reactive Absorption and Reactive Distillation. Chem. Eng. Process. Process Intensif. 2003, 42(3), 157-178.
62. Stankiewicz, A. Reactive Separations for Process Intensification: An Industrial Perspective. Chem. Eng. Process. Process Intensif. 2003, 42(3), 137-144.
63. Nowakowska, M.; Gamble, C.; Levendis, D. C. Bis (adamantan-1-aminium) Carbonate. Acta Crystallogr. E 2012, 68(4), 1159-1159.
64. Curzons, A. D.; Constable, D. C.; Cunningham, V. L. Solvent Selection Guide: A Guide to the Integration of Environmental, Health and Safety Criteria into the Selection of Solvents. Clean Products and Processes 1999, 1(2), 82-90.
65. Podrebarac, G. G.; Ng, F. T. T.; Rempel, G. L. A Kinetic Study of the Aldol Condensation of Acetone Using an Anion Exchange Resin Catalyst. Chem. Eng. Sci. 1997, 52(17), 2991-3002.
66. Wang, Z.; Richter, S. M.; Rozema, M. J.; Schellinger, A.; Smith, K.; Napolitano, J. G. Potential Safety Hazards Associated with Using Acetonitrile and A Strong Aqueous Base. Org. Process Res. Dev. 2017, 21(10), 1501-1508.
67. Damayanti, J. D.; Pratama, D. E.; Lee, T. Green Technology for Salt Formation: Slurry Reactive Crystallization Studies for Papaverine HCl and 1:1 Haloperidol-Maleic Acid Salt. Cryst. Growth Des. 2019, 19 (5), 2881-2891.
68. Konieczny, M.; Sosnovsky, G. Novel Aspects in the Preparation of Phorone. Z. Naturforsch. B 1978, 33(4), 454-460.
69. Wang, L. Y.; Yu, Y. M.; Yu, M. C.; Li, Y. T.; Wu, Z. Y.; Yan, C. W. A Crystalline Solid Adduct of Sulfathiazole–Amantadine: the First Dual-Drug Molecular Salt Containing Both Antiviral and Antibacterial Ingredients. CrystEngComm. 2020, 22(22), 3804-3813.
70. Wang, L. Y.; Bu, F. Z.; Li, Y. T.; Wu, Z. Y.; Yan, C. W. A Sulfathiazole–Amantadine Hydrochloride Cocrystal: the First Codrug Simultaneously Comprising Antiviral and Antibacterial Components. Cryst. Growth Des. 2020, 20(5), 3236-3246.
71. Wang, L. Y.; Zhao, M. Y.; Bu, F. Z.; Niu, Y. Y.; Yu, Y. M.; Li, Y. T.; Wu, Z. Y. Cocrystallization of Amantadine Hydrochloride with Resveratrol: the First Drug–Nutraceutical Cocrystal Displaying Synergistic Antiviral Activity. Cryst. Growth Des. 2021, 21(5), 2763-2776.
指導教授 李度(Tu Lee) 審核日期 2022-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明