博碩士論文 109324056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:52.14.126.74
姓名 郭虹妏(Hong-Wen Guo)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 含水深共熔溶劑系統電化學製備之奈米氫氧化鎳/鎳/碳纖維氈複合電極應用於水分解製氫
(Electrochemical Fabrication of Nanostructured Ni(OH)2/Ni/Carbon Felt Electrodes in Water-Containing Deep Eutectic Solvent System for Hydrogen Production via Water Splitting)
相關論文
★ 氫氧化鎳/奈米碳管/碳纖維複合電極之製備及其於尿素溶液中電極動力學之研究★ 無黏合劑鉻摻雜鋰鎳錳氧/碳纖維高電壓複合正極與奈米碳管/碳纖維複合負極應用於鋰離子電池之研究
★ 鈣鈦礦釔鐵氧化物/碳纖維複合電極應用於有機汙水處理之研究★ 碳黑改質對高電壓鋰離子電池正極電化學表現影響之研究
★ 電化學輔助紫外光/氯程序應用於水楊酸降解之研究★ 以廢棄太陽能電池製作Si/SiOx/Al2O3碳纖維複合式負極應用於鋰離子電池之研究
★ 部分碳化聚乙烯吡咯烷酮黏著劑應用於高電壓鋰離子電池正極之研究★ 釔鐵氧化物/氧化鈰光陽極應用於有機汙水處理
★ 水熱法合成之Li1+xAlxTi2-x(PO4)3與聚偏二氟乙烯/醋酸纖維素複合型固態電解質 應用於鋰離子電池之研究★ 以回收太陽能板之矽基材料結合石墨製備Si/SiOx/C複合負極應用於鋰離子電池之研究
★ 原位聚合生成雙鋰鹽系統類凝膠聚(1,3-二氧戊環)電解質應用於鋰離子電池之研究★ 以含水深共熔溶劑電化學系統製備奈米鎳銅合金/碳纖維氈複合電極應用於水分解製氫
★ 以有機金屬框架結合乙醇輔助水熱法製備鐵摻雜鋰鎳錳氧高電壓正極 應用於鋰離子電池之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-6-30以後開放)
摘要(中) 為因應全球能源轉型,再生能源的需求與日俱增,氫能源因其高能量密度和零污染而受到關注。其中水電解是生產氫氣最「綠色」的方法之一,其由陰極的析氫和陽極的析氧組成,過程中不涉及碳的產出。然而這兩種電化學過程都面臨著反應動力學緩慢的狀況,商用及過去所研究的水電解系統額外的高過電位以及催化材料昂貴的價格使得水電解產氫的成本居高不下。已有許多研究試圖開發低成本的過渡金屬催化劑來取代商用的貴金屬催化劑,其中以鎳基材料的性能最為理想,尤其是異質的鎳基催化結構。在本研究中,我們提供了一種於含水氯化膽鹼/尿素深共熔溶劑 (Deep Eutectic Solvent, DES)中進行的一步驟電沉積程序,利用該系統來製備奈米結構的氫氧化鎳/鎳/碳纖維氈複合電極,以催化整體水分解析氫。
實驗使用含有不同水量(1.86 wt.%、11.69 wt.%以及21.67 wt.%)的氯化膽鹼/尿素DES作為電沉積溶液,並改變施加的電壓做為電沉積的參數。我們發現在含水DES的體系中可以合成鎳/氫氧化鎳異質催化結構,-1.5CU10W複合電極表面超薄的氫氧化鎳奈米片為析氫及析氧反應提供豐富的活性位點,並且氫氧化鎳和鎳之間的協同作用以及活性Ni3+物質的存在為析氫及析氧提供了有利的條件。該電極在鹼性溶液中表現出超低的析氫過電位(30 mV@10 mA/cm2),優於大多數報導的值。較小的塔佛斜率和電荷轉移阻抗表明-1.5CU10W複合電極具有良好的催化動力學和快速的電子傳輸能力。此外,由穩定性測試所得的電解槽析氫電壓為1.69 V,表明-1.5CU10W複合電極具有實際用作雙功能催化劑的潛力。根據複合電極所表現的優異催化性能,我們認為含水DES系統的電沉積是一種製備高活性催化劑的有效方法。
摘要(英) In response to the global energy transition, the demand for renewable energy has increased recently, and hydrogen energy has attracted attention owing the high energy density and zero greenhouse gas emission. Water electrolysis is one of the most ′′green′′ tactics to produce highly pure hydrogen. In general, water splitting is consisted of anodic oxygen evolution (OER) and cathodic hydrogen evolution reaction (HER). However, these two electrochemical processes are faced with sluggish reaction kinetics, leading to a higher electrolysis voltage, increased energy consumption and hydrogen price. Many studies have attempted to develop low-cost transition metal catalysts to replace commercial noble metal catalysts, among which the performance of nickel-based materials is the most ideal, especially the heterostructure nickel-based catalyst. In this work, we provide a one-step electrodeposition process in water-containing choline chloride/urea deep eutectic solvent (ChCl/urea DES) to prepare nanostructured nickel hydroxide/nickel/carbon fiber felt composite electrodes for water splitting.
According to the materials characterizations, we found that the Ni(OH)2/Ni heterostructure can be successfully synthesized by the water-containing DES system. The -1.5CU10W electrode with ultrathin nickel hydroxide nanosheets on the surface possesses an enriched active site. Also, the possible synergistic effects between Ni(OH)2 and Ni as well as the presence of active Ni3+ species lead to the enhanced HER and OER performance. It is worth noting that -1.5CU10W electrode exhibits an ultra-low HER overpotential (30 mV@10 mA/cm2) in alkaline solution, which is better than most reported values. The smaller Tafel slope and charge transfer impedance indicate that -1.5CU10W electrode has good catalytic kinetic and fast electron transportability. Furthermore, The overall cell voltage obtained by the stability test was 1.69 V, indicating that -1.5CU10W electrode has the potential to replace commercial catalysts. The excellent catalytic performance of the composite electrode suggests that the electrodeposition in a water-containing DES system is an efficient strategy to prepare highly active catalysts.
關鍵字(中) ★ 深共熔溶劑
★ 水分解
★ 析氫
★ 析氧
★ 鎳基催化劑
關鍵字(英) ★ Deep Eutectic Solvents
★ Water Splitting
★ Hydrogen Evolution
★ Oxygen Evolution
★ Nickel-Based Catalysts
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 v
圖目錄 viii
表目錄 xi
第一章、序論 1
1-1氫能源的發展 1
1-2氫能源的製造 2
1-3水電解產氫 4
1-3-1陰極析氫反應(Hydrogen Evolution Reaction, HER) 4
1-3-2陽極析氧反應(Oxygen Evolution Reaction, OER) 6
1-3-3 整體水電解電位 7
1-4複合電極 8
1-4-1電極基材 8
1-4-2催化材料之性能衡量 9
1-4-3 催化劑材料的介紹 11
1-5深共熔溶劑(Deep Eutectic Solvents, DESs) 16
1-5-1深共熔溶劑的類別 17
1-5-2基於氯化膽鹼的深共熔溶劑之形成機制 19
1-5-3深共熔溶劑的應用領域 21
1-6研究動機 23
第二章、文獻回顧 24
2-1奈米結構鎳基觸媒 24
2-2自支撐觸媒電極 26
2-3鎳基異質催化劑 29
2-4 基於氯化膽鹼的深共熔溶劑—催化材料的電沉積 31
2-5含水的深共熔溶劑系統 34
2-5-1 水對於深共熔溶劑奈米結構的影響 36
2-5-2 含水DES的金屬電沉積 38
第三章、實驗方法 40
3-1 實驗架構 40
3-2 實驗步驟 43
3-2-1 深共熔溶劑的製備 43
3-2-2 鎳基複合電極的電沉積 43
3-3 材料分析 46
3-3-1 傅立葉轉換紅外線光譜儀 (Fourier-Transform Infrared Spectroscopy, FTIR) 47
3-3-2 流變儀 (Rheometers) 47
3-3-3 X射線繞射儀(X-ray Diffraction, XRD) 47
3-3-4 X射線光電子能譜儀 (X-ray Photoelectron Spectroscopy, XPS) 48
3-3-5高解析場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope, FE-SEM) 48
3-3-6高解析穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM) 49
3-4 複合電極的電化學分析 49
3-4-1 過電位 (Overpotential, η) 50
3-4-2 塔佛斜率 (Tafel slope, b) 51
3-4-3 電化學阻抗分析 (Electrochemical Impedance Spectroscopy, EIS) 52
3-4-4 電化學活性表面積 (Electrochemical Active Surface Area, ECSA) 52
3-4-5 穩定性測試 (Stability) 53
3-4-6 法拉第效率(Faradaic Efficiency) 53
第四章、 結果與討論 55
4-1 無水及含水氯化膽鹼/尿素DES之性質分析 55
4-1-1 氯化膽鹼/尿素DES之FTIR分析 55
4-1-2 含水氯化膽鹼/尿素DES之FTIR分析 55
4-1-3 含水氯化膽鹼/尿素DES之黏度與電導率分析 57
4-2 複合電極的材料分析 60
4-2-1 複合電極的XRD分析 60
4-2-2 複合電極的SEM分析 63
4-2-3 複合電極的XPS分析 68
4-2-4複合電極的HRTEM分析 71
4-3 含水氯化膽鹼/尿素DES中氫氧化鎳/鎳的沉積機制 75
4-4 複合電極的催化性能分析 78
4-4-1 析氫極化曲線:過電位分析 78
4-4-2 析氧極化曲線:過電位分析 83
4-4-3電極動力學分析:塔佛斜率 86
4-4-4電極動力學分析:電化學阻抗分析 88
4-4-5電化學活性表面積的評估 93
4-4-6長期穩定性測試 96
4-4-7 產氫效果的評估:法拉第效率 98
第五章、結論與未來展望 100
5-1結論 100
5-1-1含水氯化膽鹼/尿素DES電沉積系統 100
5-1-2複合電極的析氫/析氧催化活性 102
5-2 未來展望 104
參考文獻 105
附錄一 115
附錄二 119
參考文獻 1. 經濟部能源局. 再生能源展望-氫能篇. 2018; Available from: https://www.re.org.tw/knowledge/more.aspx?cid=201&id=2158.
2. 台灣科技媒體中心. 國際氫能發展近況與我國氫能發展契機. 2020; Available from: https://smctw.tw/7949/.
3. Wang, J., et al., Non-Noble Metal-based Carbon Composites in Hydrogen Evolution Reaction: Fundamentals to Applications. Adv Mater, 2017. 29(14).
4. 經濟部技術處. 產業技術評析-全球氫氣生產方式的發展與趨勢. 2021; Available from: https://www.moea.gov.tw/MNS/doit/industrytech/IndustryTech.aspx?menu_id=13545&it_id=364.
5. Newborough, M. and G. Cooley, Developments in the global hydrogen market: The spectrum of hydrogen colours. Fuel Cells Bulletin, 2020. 2020(11): p. 16-22.
6. Chen, P., et al., Recent progress of transition metal carbides/nitrides for electrocatalytic water splitting. Journal of Alloys and Compounds, 2021. 883.
7. Zhu, J., et al., Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chem Rev, 2020. 120(2): p. 851-918.
8. Wang, S., et al., Electrodeposition of nano-nickel in deep eutectic solvents for hydrogen evolution reaction in alkaline solution. International Journal of Hydrogen Energy, 2018. 43(33): p. 15673-15686.
9. Sun, C.B., et al., Efficient hydrogen production via urea electrolysis with cobalt doped nickel hydroxide-riched hybrid films: Cobalt doping effect and mechanism aspect. Journal of Catalysis, 2020. 381: p. 454-461.
10. Suen, N.T., et al., Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem Soc Rev, 2017. 46(2): p. 337-365.
11. Koper, M.T.M., Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis. Journal of Electroanalytical Chemistry, 2011. 660(2): p. 254-260.
12. Fabbri, E., et al., Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catal. Sci. Technol., 2014. 4(11): p. 3800-3821.
13. Zeng, K. and D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in Energy and Combustion Science, 2010. 36(3): p. 307-326.
14. Luo, Y., Y. Shi, and N. Cai, Hybrid Systems and Multi-energy Networks for the Future Energy Internet. 2020: Academic Press.
15. Tahir, M., et al., Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy, 2017. 37: p. 136-157.
16. Masa, J., et al., Amorphous Cobalt Boride (Co2
B) as a Highly Efficient Nonprecious Catalyst for Electrochemical Water Splitting: Oxygen and Hydrogen Evolution. Advanced Energy Materials, 2016. 6(6).
17. Parsons, R., The Rate of Electrolytic Hydrogen Evolution and the Heat of Adsorption of Hydrogen. . Trans. Faraday Soc., 1958. 54, 1053−1063.
18. Seh, Z.W.K., J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F., Combining Theory and Experiment in Electrocatalysis: Insights into Materials Design. Science, 2017. 355, eaad4998.
19. Sheng, W., et al., Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy & Environmental Science, 2013. 6(5).
20. Hu, C., L. Zhang, and J. Gong, Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy & Environmental Science, 2019. 12(9): p. 2620-2645.
21. Man, I.C., et al., Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces. ChemCatChem, 2011. 3(7): p. 1159-1165.
22. Sun, C., et al., Direct Electrodeposition of Phosphorus-Doped Nickel Superstructures from Choline Chloride–Ethylene Glycol Deep Eutectic Solvent for Enhanced Hydrogen Evolution Catalysis. ACS Sustainable Chemistry & Engineering, 2018. 7(1): p. 1529-1537.
23. Zhang, Q., et al., Orthorhombic α-NiOOH Nanosheet Arrays: Phase Conversion and Efficient Bifunctional Electrocatalysts for Full Water Splitting. ACS Sustainable Chemistry & Engineering, 2017. 5(5): p. 3808-3818.
24. Zalineeva, A., et al., Octahedral Palladium Nanoparticles as Excellent Hosts for Electrochemically Adsorbed and Absorbed Hydrogen. Sci. Adv., 2017. 3.
25. Liu, S., et al., Pd Nanoparticle Assemblies as Efficient Catalysts for the Hydrogen Evolution and Oxygen Reduction Reactions. European Journal of Inorganic Chemistry, 2017. 2017(3): p. 535-539.
26. Liao, H., et al., A Multisite Strategy for Enhancing the Hydrogen Evolution Reaction on a Nano-Pd Surface in Alkaline Media. Advanced Energy Materials, 2017. 7(21).
27. Conway, B.E.a.T., B. V., Interfacial Processes Involving Electrocatalytic Evolution and Oxidation of H2, and the Role of Chemisorbed H. Electrochim. Acta, 2002. 47, 3571−3594.
28. Chen, J., et al., Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today, 2009. 4(1): p. 81-95.
29. Ji, L., et al., In Situ Preparation of Pt Nanoparticles Supported on N-Doped Carbon as Highly Efficient Electrocatalysts for Hydrogen Production. The Journal of Physical Chemistry C, 2017. 121(16): p. 8923-8930.
30. Tavakkoli, M., et al., Electrochemical Activation of Single-Walled Carbon Nanotubes with Pseudo-Atomic-Scale Platinum for the Hydrogen Evolution Reaction. ACS Catalysis, 2017. 7(5): p. 3121-3130.
31. Chen, C., et al., Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science, 2014. 343(6177): p. 1339-43.
32. Du, X.X., et al., Fine-grained and fully ordered intermetallic PtFe catalysts with largely enhanced catalytic activity and durability. Energy & Environmental Science, 2016. 9(8): p. 2623-2632.
33. Zou, X. and Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev, 2015. 44(15): p. 5148-80.
34. Miles, M.H., and Thomason, M.A., Periodic Variations of Overvoltages for Water Electrolysis in Acid Solutions from Cyclic Voltammetric Studies. Electrochem. Soc., 1976. 123.
35. Yang, T., et al., Highly Efficient and Durable PtCo Alloy Nanoparticles Encapsulated in Carbon Nanofibers for Electrochemical Hydrogen Generation. Chem. Commun., 2016. 52.
36. Wang, M., et al., Facile One-Step Electrodeposition Preparation of Porous NiMo Film as Electrocatalyst for Hydrogen Evolution Reaction. Int. J. Hydrogen Energy, 2015. 40: p. 2173-2182.
37. McKone, J.R., et al., Ni-Mo Nanopowders for Efficient Electrochemical Hydrogen Evolution. ACS Catal., 2013. 3: p. 166-169.
38. Yang, Y., et al., Tuning Electronic Structures of Nonprecious Ternary Alloys Encapsulated in Graphene Layers for Optimizing Overall Water Splitting Activity. ACS Catal., 2017. 7: p. 469-479.
39. Marshall, A.T. and R.G. Haverkamp, Electrocatalytic activity of IrO2–RuO2 supported on Sb-doped SnO2 nanoparticles. Electrochimica Acta, 2010. 55(6): p. 1978-1984.
40. Audichon, T., et al., IrO2 Coated on RuO2 as Efficient and Stable Electroactive Nanocatalysts for Electrochemical Water Splitting. The Journal of Physical Chemistry C, 2016. 120(5): p. 2562-2573.
41. J. O. M. Bockris and T. Otagawa, J., The Electrocatalysis of Oxygen Evolution on Perovskites. Electrochem. Soc., 1984. 131: p. 290-302.
42. Li, M., et al., Facile synthesis of electrospun MFe2O4 (M = Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction. Nanoscale, 2015. 7(19): p. 8920-30.
43. Subbaraman, R., et al., Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat Mater, 2012. 11(6): p. 550-7.
44. Song, F. and X. Hu, Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat Commun, 2014. 5: p. 4477.
45. Smith, E.L., et al., Deep eutectic solvents (DESs) and their applications. Chem Rev, 2014. 114(21): p. 11060-82.
46. Zhang, Q., et al., Deep eutectic solvents: syntheses, properties and applications. Chemical Society Reviews, 2012.
47. Abbott, A.P., et al., Eutectic‐based ionic liquids with metal‐containing anions and cations. Chemistry–A European Journal, 2007.
48. Gambino, M., et al., Enthalpie de fusion de l′uree et de quelques melanges eutectiques a base d′uree. Thermochimica acta, 1987.
49. Sun, H., et al., Theoretical study on the structures and properties of mixtures of urea and choline chloride. Journal of molecular modeling, 2013.
50. Hansen, B.B., et al., Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem Rev, 2021. 121(3): p. 1232-1285.
51. Ashworth, C.R., et al., Doubly ionic hydrogen bond interactions within the choline chloride-urea deep eutectic solvent. Phys Chem Chem Phys, 2016. 18(27): p. 18145-60.
52. Stefanovic, R., et al., Nanostructure, hydrogen bonding and rheology in choline chloride deep eutectic solvents as a function of the hydrogen bond donor. Phys Chem Chem Phys, 2017. 19(4): p. 3297-3306.
53. Abbott, A.P., et al., Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. Journal of the American Chemical Society, 2004.
54. Rimsza, J.M.a.C., L. R., Adsorption complexes of copper and copper oxide in the deep eutectic solvent 2: 1 urea–choline chloride. Computational and Theoretical Chemistry, 2012.
55. Gomez, E., et al., Electrodeposition of SmCo Nanostructures in Deep Eutectic Solvent. ECS Transactions, 2012.
56. Wagle, D.V., et al., Deep eutectic solvents: sustainable media for nanoscale and functional materials. Acc Chem Res, 2014. 47(8): p. 2299-308.
57. Ge, X., et al., Deep eutectic solvents (DESs)-derived advanced functional materials for energy and environmental applications: challenges, opportunities, and future vision. Journal of Materials Chemistry A, 2017. 5(18): p. 8209-8229.
58. Gong, M., et al., A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Research, 2015. 9(1): p. 28-46.
59. Ahn, S.H., et al., Electrodeposited Ni dendrites with high activity and durability for hydrogen evolution reaction in alkaline water electrolysis. Journal of Materials Chemistry, 2012. 22(30).
60. Zheng, Y., et al., Three-dimensional NiCu layered double hydroxide nanosheets array on carbon cloth for enhanced oxygen evolution. Electrochimica Acta, 2018. 282: p. 735-742.
61. Long, X., et al., Transition metal based layered double hydroxides tailored for energy conversion and storage. Materials Today, 2016. 19(4): p. 213-226.
62. Stern, L.A. and X. Hu, Enhanced oxygen evolution activity by NiOx and Ni(OH)2 nanoparticles. Faraday Discuss, 2014. 176: p. 363-79.
63. Cai, G., et al., Template-Directed Growth of Well-Aligned MOF Arrays and Derived Self-Supporting Electrodes for Water Splitting. Chem, 2017. 2(6): p. 791-802.
64. Xiong, D., et al., Vertically Aligned Porous Nickel(II) Hydroxide Nanosheets Supported on Carbon Paper with Long-Term Oxygen Evolution Performance. Chem Asian J, 2017. 12(5): p. 543-551.
65. Zhou, X., et al., One-step synthesis of multi-walled carbon nanotubes/ultra-thin Ni(OH)2 nanoplate composite as efficient catalysts for water oxidation. J. Mater. Chem. A, 2014. 2(30): p. 11799-11806.
66. Wu, J., et al., Facile assembly of Ni(OH)2 nanosheets on nitrogen-doped carbon nanotubes network as high-performance electrocatalyst for oxygen evolution reaction. Journal of Alloys and Compounds, 2018. 731: p. 766-773.
67. Cao, L.M., et al., Electrochemically Controlled Synthesis of Ultrathin Nickel Hydroxide Nanosheets for Electrocatalytic Oxygen Evolution. Inorg Chem, 2021. 60(5): p. 3365-3374.
68. Raj, I.A.a.V., K. I. , Transition metal-based hydrogen electrodes in alkaline solution—Electrocatalysis on nickel based binary alloy coatings. J. Appl. Electrochem., 1990.
69. McKone, J.R., et al., Ni–Mo Nanopowders for Efficient Electrochemical Hydrogen Evolution. ACS Catalysis, 2013. 3(2): p. 166-169.
70. Subbaraman, R., et al., Enhancing hydrogen evolution activity in water splitting by tailoring Li+–Ni(OH)2–Pt interfaces. Science, 2011.
71. Danilovic, N., et al., Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts. Angew Chem Int Ed Engl, 2012. 51(50): p. 12495-8.
72. Abbott, A.P., et al., Novel solvent properties of choline chloride/urea mixtures. Chemical communications, 2003.
73. Lu, Y., et al., Electrodeposition of Ni Mo Cu coatings from roasted nickel matte in deep eutectic solvent for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019. 44(12): p. 5704-5716.
74. Yang, W.Q., et al., Electrochemical fabrication of 3D quasi-amorphous pompon-like Co-O and Co-Se hybrid films from choline chloride/urea deep eutectic solvent for efficient overall water splitting. Electrochimica Acta, 2018. 273: p. 71-79.
75. Edison, T.N.J.I., et al., Deep eutectic solvent assisted electrosynthesis of ruthenium nanoparticles on stainless steel mesh for electrocatalytic hydrogen evolution reaction. Fuel, 2021. 297.
76. Protsenko, V.S., et al., Application of a deep eutectic solvent to prepare nanocrystalline Ni and Ni/TiO2 coatings as electrocatalysts for the hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019. 44(45): p. 24604-24616.
77. Gao, M.Y., et al., Facile electrochemical preparation of self-supported porous Ni–Mo alloy microsphere films as efficient bifunctional electrocatalysts for water splitting. Journal of Materials Chemistry A, 2017. 5(12): p. 5797-5805.
78. Gao, M.Y., et al., Electrochemical fabrication of porous Ni-Cu alloy nanosheets with high catalytic activity for hydrogen evolution. Electrochimica Acta, 2016. 215: p. 609-616.
79. Mou, H., et al., A facile and controllable, deep eutectic solvent aided strategy for the synthesis of graphene encapsulated metal phosphides for enhanced electrocatalytic overall water splitting. Journal of Materials Chemistry A, 2019. 7(22): p. 13455-13459.
80. Kopczyński, K. and G. Lota, Electrocatalytic properties of a cerium/nickel coating deposited using a deep eutectic solvent. Electrochemistry Communications, 2019. 107.
81. Du, C., et al., Effect of water presence on choline chloride-2urea ionic liquid and coating platings from the hydrated ionic liquid. Sci Rep, 2016. 6: p. 29225.
82. Cammarata, L., et al., Molecular states of water in room temperature ionic liquids. Phys. Chem., 2001.
83. Li, R., et al., Electrodeposition of composition controllable Zn Ni coating from water modified deep eutectic solvent. Surface and Coatings Technology, 2019. 366: p. 138-145.
84. Hammond, O.S., et al., The Effect of Water upon Deep Eutectic Solvent Nanostructure: An Unusual Transition from Ionic Mixture to Aqueous Solution. Angew Chem Int Ed Engl, 2017. 56(33): p. 9782-9785.
85. Sapir, L. and D. Harries, Restructuring a Deep Eutectic Solvent by Water: The Nanostructure of Hydrated Choline Chloride/Urea. J Chem Theory Comput, 2020. 16(5): p. 3335-3342.
86. Al-Murshedi, A.Y.M., et al., Effect of water on the electrodeposition of copper on nickel in deep eutectic solvents. Transactions of the IMF, 2019. 97(6): p. 321-329.
87. Lukaczynska, M., et al., Influence of water content and applied potential on the electrodeposition of Ni coatings from deep eutectic solvents. Electrochimica Acta, 2019. 319: p. 690-704.
88. Mernissi Cherigui, E.A., et al., Comprehensive Study of the Electrodeposition of Nickel Nanostructures from Deep Eutectic Solvents: Self-Limiting Growth by Electrolysis of Residual Water. The Journal of Physical Chemistry C, 2017. 121(17): p. 9337-9347.
89. Gao, Q., et al., Structural Design and Electronic Modulation of Transition-Metal-Carbide Electrocatalysts toward Efficient Hydrogen Evolution. Adv Mater, 2019. 31(2): p. e1802880.
90. Zhao, J., et al., “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano Energy, 2019. 57: p. 625-634.
91. Ge, X., et al., A versatile protocol for the ionothermal synthesis of nanostructured nickel compounds as energy storage materials from a choline chloride-based ionic liquid. Journal of Materials Chemistry A, 2013. 1(43).
92. Xing, Z., et al., Experimental and theoretical insights into sustained water splitting with an electrodeposited nanoporous nickel hydroxide@nickel film as an electrocatalyst. Journal of Materials Chemistry A, 2017. 5(17): p. 7744-7748.
93. Valverde, P.E., T.A. Green, and S. Roy, Effect of water on the electrodeposition of copper from a deep eutectic solvent. Journal of Applied Electrochemistry, 2020. 50(6): p. 699-712.
94. Guo, L.a.S.P.C., On the influence of the nucleation overpotential on island growth in electrodeposition. Electrochim Acta, 2010.
95. Ding, Y., et al., Atomically thick Ni(OH)2 nanomeshes for urea electrooxidation. Nanoscale, 2019. 11(3): p. 1058-1064.
96. Zhang, X., et al., Ni(OH)2-Fe2P hybrid nanoarray for alkaline hydrogen evolution reaction with superior activity. Chem Commun (Camb), 2018. 54(10): p. 1201-1204.
97. Lin, C., et al., In situ growth of single-layered α-Ni (OH) 2 nanosheets on a carbon cloth for highly efficient electrocatalytic oxidation of urea. Journal of Materials Chemistry A, 2018.
98. Liu, S., et al., Effects of boric acid and water on the deposition of Ni/TiO2 composite coatings from deep eutectic solvent. Surface and Coatings Technology, 2021. 409.
99. Nakayama, M., K. Suzuki, and K. Fujii, Single-ion catalyst of Ni2+ anchored in the interlayer space of layered MnO2 for electro-oxidation of ethanol in alkaline electrolyte. Electrochemistry Communications, 2019. 105.
100. Li, X., et al., Sequential Electrodeposition of Bifunctional Catalytically Active Structures in MoO3 /Ni-NiO Composite Electrocatalysts for Selective Hydrogen and Oxygen Evolution. Adv Mater, 2020. 32(39): p. e2003414.
101. Zhang, J.-Y., et al., Energy-saving hydrogen production coupling urea oxidation over a bifunctional nickel-molybdenum nanotube array. Nano Energy, 2019. 60: p. 894-902.
指導教授 劉奕宏 審核日期 2022-8-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明