博碩士論文 109324068 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:3.138.122.195
姓名 謝姿渝(Tzu-Yu Hsieh)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 聚合物-奈米粒子複合材料在玻璃轉移溫度下的結構與動力學相關性之實驗與模擬研究
(Combined Experimental and Computational Study of Structure-Dynamics Correlations for Polymer-Nanoparticle Composites Across The Glass Transition Temperatures)
相關論文
★ 雙連續相中孔二氧化鈦光催化以及電子結構之實驗與模擬研究★ 新興糖基雙子型界面活性劑之結構以及其對基因轉染效率之影響
★ 自發曲率、金屬離子吸附以及微脂體膜融合效率三者間之相關性探討★ 脂質組成成分對細胞膜物理性質與生物功能的影響
★ 添加具有抗菌潛力的胜肽對磷脂質自組裝結構與彈性性質的影響★ 分子構型與表面電荷密度對雙子型陰陽離子界面活性劑系統之相行為影響
★ 探討具有不同間隔長度的陰、陽離子雙子型界面活性劑對於DNA壓實與解壓實之影響★ 具抗菌潛力之胜肽如何影響脂質膜的彈性性質與結構完整性
★ CoCrFeMnNi 高熵合金 形變行為之探討★ 透過改變磷脂質排列密度減少Amyloid β與膜之間交互作用
★ 對生物膜具活性的胜肽誘導相分離脂質膜產生結構上擾動★ 人類脂肪幹細胞於生醫材料塗佈細胞外間質之純化及分化
★ 發展量測雙層脂質膜的排列密度之實驗技術★ 利用酸鹼度敏感型雙子型界面活性劑製作之基因載體對核內體脂質膜結構之影響
★ 開發預測雙子型界面活性劑之自組裝結構的方法★ 抗肌萎縮蛋白的膜結合錨如何影響其與脂質膜的相互作用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 聚合物-無機奈米顆粒複合材料通常表現出優於其原本單一成分的材料 性能,所以獲得廣泛的應用。然而,許多科學和技術問題仍未得到解決, 特別是複合材料的動態行為及其與微觀結構的相關性。在這項研究中,我 們目的在透過實驗和模擬解決動力學和結構相關性發展的問題。 實驗上,將在兩種分子量的聚(2-乙烯基吡啶) (P2VP)聚合物基質中的 乙醯丙酮鈀(Pd(acac)2)還原成鈀(Pd),形成奈米顆粒複合材料。利用熱微差 掃描分析儀、流變學以及小角度和廣角 X 光散射儀,分析了在溫度高過玻 璃轉移溫度下,Pd 濃度和 P2VP 分子量會如何影響複合材料的動力學和結 構-動力學相關性。在模擬上,我們使用分子動力學模擬在各種條件下的結 構和分子運動,從中可以得到聚合物鏈的迴轉半徑(Rg)、玻璃轉化溫度 (Tg)和均方位移(MSD)。 綜合模擬和實驗的結果,我們希望深入了解複合材料的結構和動力學 如何相互關聯,以及這些微觀尺度的相關性如何決定宏觀尺度的材料特 性。本研究確定由還原反應製備出 Pd NPs,並使用 SAXS 分析樣品形態, 符合預期的模型及分散性。後續使用 DSC 分析熱性質,隨著分子量與 Pd(acac)2濃度的提高,Tg 也會有增加的趨勢。最後使用流變儀分析不同濃 度下的運動行為。在模擬中加入吸引的作用力均會有和實驗相符的趨勢出 現,而沒有吸引力的系統則與實驗不符,所以我們發現在聚合物和奈米粒 子間有吸引力的存在,使這些樣品顯現出這樣的熱性質與動態性質。
摘要(英) Polymer-inorganic nanoparticle composites exhibit materials properties superior to their constituents and thereby enable a wide range of applications. However, many scientific and technical issues remain unaddressed, especially the dynamic behaviors of the composites and their correlation with the microscopic structures, which are practically important due to their influences on materials processing and production. In this research, we aim to address the issues evolving around the dynamics and structure-dynamics correlations via experiments and simulations. Experimentally, by in-situ reduction of metal salts (Palladium (II) acetylacetonate) dispersed in a polymer matrix, we are able to prepare nanocomposites of palladium (Pd) nanoparticles embedded in the polymer, poly(2-vinyl pyridine) (P2VP), featured with different Pd loadings and polymer molecular weights (MWs). By exploiting differential scanning calorimetry, rheology, and small- and wide-angle X-ray scattering, we explore how variations in Pd loadings and P2VP MWs (below and above the entanglement MW) affect the dynamics and structure-dynamics correlations of the composites at temperatures across the glass transition temperature. Computationally, molecular-dynamics simulations are employed to examine the structures and molecular motions of the composite systems under a variety of conditions, from which the radius of gyration of the polymer chains, glass transition temperature and the mean-square displacement of the polymer chains are calculated. Integrating the results from the simulations and experiments, we expect to develop insights on how the structures and dynamics of the composites correlate iii with each other and how these correlations in the microscopic scale dictate materials properties in the macroscopic scale. In this study, it was determined that Pd NPs were prepared by the reduction reaction, and the sample morphology was analyzed by SAXS, which was in line with the expected model and dispersion. And in the simulation, adding the attraction interaction in the systems would have a dispersion that was consistent with the experiment. Then using DSC to analyze thermal properties shows that with increasing the molecular weight and Pd(acac)2 concentration, Tg will also increase. Last, using a rheometer to analyze the motion behavior, with increasing the concentrations of the Pd(acac)2, the motion become slow. Finally, adding an attractive interaction in the simulation will have a consistent trend with the experiment, and these properties are due to the attractive interaction between polymers and nanoparticles in the samples
關鍵字(中) ★ 奈米顆粒複合材料 關鍵字(英)
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xiii
第一章 緒論 1
1.1 簡介 1
1.2 研究目的及動機 2
第二章 文獻回顧 3
2.1 複合材料 3
2.2 奈米複合材料 4
2.3 金屬奈米複合材料之發展和重要性 4
2.4 金屬奈米複合材料的應用 5
2.4.1 催化劑 6
2.5 奈米複合材料的製備技術 6
2.5.1 Ex situ技術 7
2.5.2 In situ技術 7
2.6 聚合物無機奈米粒子複合材料的性質 8
2.7 P2VP與Pd之簡介 11
2.8 分子動力學模擬的目標與發展 16
2.9 LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) 17
2.9.1 LAMMPS 簡介 17
2.9.2 使用 LAMMPS 進行 MD 模擬的方法 18
2.9.3 LAMMPS的應用 20
第三章 實驗與模擬方法 23
3.1 樣品製備 23
3.2 分析用儀器原理介紹 24
3.2.1 小角度與廣角X光散射儀 24
3.2.2 熱微差掃描分析儀 27
3.2.3 真空壓合機與流變儀 29
3.3 模型架構與參數設定 34
3.3.1 聚合物系統 34
3.3.2 聚合物加奈米粒子系統 43
第四章 結果與討論 53
4.1 分散與結構 (Dispersion and structure) 53
4.1.1 SAXS分析 53
4.1.2 模擬分析 59
4.2 熱性質(Thermal properties) 63
4.2.1 DSC分析 63
4.2.2 模擬分析 65
4.2.3 綜合模擬與實驗討論熱性質 70
4.3 流變性質 72
4.3.1 流變儀分析 72
4.3.2 模擬分析 75
4.3.3 綜合模擬與實驗討論動態性質 81
第五章 結論 82
參考文獻 83
參考文獻 [1] X. Zhao, X. Ding, Z. Deng, Z. Zheng, Y. Peng, and X. Long, "Thermoswitchable electronic properties of a gold nanoparticle/hydrogel composite," Macromolecular rapid communications, vol. 26, no. 22, pp. 1784-1787, 2005.
[2] A. Shafiqa, A. A. Aziz, and B. Mehrdel, "Nanoparticle optical properties: Size dependence of a single gold spherical nanoparticle," in Journal of Physics: Conference Series, 2018, vol. 1083, no. 1: IOP Publishing, p. 012040.
[3] G. Odegard, T. Clancy, and T. Gates, "Modeling of the mechanical properties of nanoparticle/polymer composites," in Characterization of Nanocomposites: Jenny Stanford Publishing, 2017, pp. 319-342.
[4] B.-h. Choi, H.-H. Lee, S. Jin, S. Chun, and S.-H. Kim, "Characterization of the optical properties of silver nanoparticle films," Nanotechnology, vol. 18, no. 7, p. 075706, 2007.
[5] Q. Li et al., "Flexible high-temperature dielectric materials from polymer nanocomposites," Nature, vol. 523, no. 7562, pp. 576-579, 2015.
[6] S. K. Kumar, N. Jouault, B. Benicewicz, and T. Neely, "Nanocomposites with polymer grafted nanoparticles," Macromolecules, vol. 46, no. 9, pp. 3199-3214, 2013.
[7] O. Hosu, M. M. Barsan, C. Cristea, R. Săndulescu, and C. Brett, "Nanocomposites based on carbon nanotubes and redox-active polymers synthesized in a deep eutectic solvent as a new electrochemical sensing platform," Microchimica Acta, vol. 184, no. 10, pp. 3919-3927, 2017.
[8] L. Zhao and Z. Lin, "Crafting semiconductor organic− inorganic nanocomposites via placing conjugated polymers in intimate contact with nanocrystals for hybrid solar cells," Advanced Materials, vol. 24, no. 32, pp. 4353-4368, 2012.
[9] L. Marcoux, J. Florek, and F. Kleitz, "Critical assessment of the base catalysis properties of amino-functionalized mesoporous polymer-SBA-15 nanocomposites," Applied Catalysis A: General, vol. 504, pp. 493-503, 2015.
[10] N. Yousefi et al., "Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high‐performance electromagnetic interference shielding," Advanced Materials, vol. 26, no. 31, pp. 5480-5487, 2014.
[11] A. Wang et al., "Fabrication of mesoporous silica nanoparticle with well-defined multicompartment structure as efficient drug carrier for cancer therapy in vitro and in vivo," ACS Applied Materials & Interfaces, vol. 8, no. 14, pp. 8900-8907, 2016.
[12] C. Wang, Q. Cui, X. Wang, and L. Li, "Preparation of hybrid gold/polymer nanocomposites and their application in a controlled antibacterial assay," ACS Applied Materials & Interfaces, vol. 8, no. 42, pp. 29101-29109, 2016.
[13] R. Konwarh, N. Karak, S. K. Rai, and A. K. Mukherjee, "Polymer-assisted iron oxide magnetic nanoparticle immobilized keratinase," Nanotechnology, vol. 20, no. 22, p. 225107, 2009.
[14] S. Pramanik and P. Das, "Metal-based nanomaterials and their polymer nanocomposites," in Nanomaterials and polymer nanocomposites: Elsevier, 2019, pp. 91-121.
[15] J. Gu, J. M. Catchmark, E. Q. Kaiser, and D. D. Archibald, "Quantification of cellulose nanowhiskers sulfate esterification levels," Carbohydrate polymers, vol. 92, no. 2, pp. 1809-1816, 2013.
[16] B. Domènech, M. Muñoz, D. N. Muraviev, and J. Macanás, "Polymer-stabilized palladium nanoparticles for catalytic membranes: ad hoc polymer fabrication," Nanoscale research letters, vol. 6, no. 1, pp. 1-5, 2011.
[17] G. Carotenuto, L. Nicolais, B. Martorana, and P. Perlo, "Metal–polymer nanocomposite synthesis: novel ex situ and in situ approaches," Metal–Polymer Nanocomposites, p. 155, 2005.
[18] N. Karak, Fundamentals of polymers: raw materials to finish products. PHI Learning Pvt. Ltd., 2009.
[19] W. Bahloul, V. Bounor‐Legaré, L. David, and P. Cassagnau, "Morphology and viscoelasticity of PP/TiO2 nanocomposites prepared by in situ sol–gel method," Journal of Polymer Science Part B: Polymer Physics, vol. 48, no. 11, pp. 1213-1222, 2010.
[20] H. S. Vaziri, I. A. Omaraei, M. Abadyan, M. Mortezaei, and N. Yousefi, "Thermophysical and rheological behavior of polystyrene/silica nanocomposites: Investigation of nanoparticle content," Materials & Design, vol. 32, no. 8-9, pp. 4537-4542, 2011.
[21] T. Wei and J. M. Torkelson, "Molecular weight dependence of the glass transition temperature (T g)-Confinement effect in well-dispersed poly (2-vinyl pyridine)–silica nanocomposites: Comparison of interfacial layer T g and matrix T g," Macromolecules, vol. 53, no. 19, pp. 8725-8736, 2020.
[22] K. Tsutsumi, Y. Funaki, Y. Hirokawa, and T. Hashimoto, "Selective incorporation of palladium nanoparticles into microphase-separated domains of poly (2-vinylpyridine)-b lock-polyisoprene," Langmuir, vol. 15, no. 16, pp. 5200-5203, 1999.
[23] T. Hashimoto, M. Harada, and N. Sakamoto, "Incorporation of metal nanoparticles into block copolymer nanodomains via in-situ reduction of metal ions in microdomain space," Macromolecules, vol. 32, no. 20, pp. 6867-6870, 1999.
[24] S. Akasaka, H. Mori, T. Osaka, V. H. Mareau, and H. Hasegawa, "Controlled introduction of metal nanoparticles into a microdomain structure," Macromolecules, vol. 42, no. 4, pp. 1194-1202, 2009.
[25] Y.-C. Lin, H.-L. Chen, T. Hashimoto, and S.-A. Chen, "Mechanism of hierarchical structure formation of polymer/nanoparticle hybrids," Macromolecules, vol. 49, no. 19, pp. 7535-7550, 2016.
[26] B. W. Mansel, C.-Y. Chen, J.-M. Lin, Y.-S. Huang, Y.-C. Lin, and H.-L. Chen, "Hierarchical structure and dynamics of a polymer/nanoparticle hybrid displaying attractive polymer–particle interaction," Macromolecules, vol. 52, no. 22, pp. 8741-8750, 2019.
[27] N. Attig, K. Binder, H. Grubmüller, and K. Kremer, "Computational soft matter: from synthetic polymers to proteins," John von Neumann Institute for Computing (NIC), Juelich, 2004.
[28] S. Plimpton, "Fast parallel algorithms for short-range molecular dynamics," Journal of computational physics, vol. 117, no. 1, pp. 1-19, 1995.
[29] S. Plimpton, R. Pollock, and M. Stevens, "Particle-Mesh Ewald and rRESPA for Parallel Molecular Dynamics Simulations," in PPSC, 1997: Citeseer.
[30] K. Kremer and G. S. Grest, "Dynamics of entangled linear polymer melts: A molecular‐dynamics simulation," The Journal of Chemical Physics, vol. 92, no. 8, pp. 5057-5086, 1990.
[31] Z. Li et al., "Molecular dynamics simulation of the viscoelasticity of polymer nanocomposites under oscillatory shear: effect of interfacial chemical coupling," RSC advances, vol. 8, no. 15, pp. 8141-8151, 2018.
[32] H.-P. Hsu and K. Kremer, "A coarse-grained polymer model for studying the glass transition," The Journal of chemical physics, vol. 150, no. 9, p. 091101, 2019.
[33] M. Rubinstein and R. H. Colby, Polymer physics. Oxford university press New York, 2003.
[34] M. Gräwert and D. Svergun, "A beginner′s guide to solution small-angle X-ray scattering (SAXS)," The Biochemist, vol. 42, no. 1, pp. 36-42, 2020.
[35] P. Dhatarwal and R. Sengwa, "Nanofiller controllable optical parameters and improved thermal properties of (PVP/PEO)/Al2O3 and (PVP/PEO)/SiO2 nanocomposites," Optik, vol. 233, p. 166594, 2021.
[36] S. Basha, K. V. Kumar, G. S. Sundari, and M. Rao, "Structural and electrical properties of graphene oxide-doped PVA/PVP blend nanocomposite polymer films," Advances in materials Science and Engineering, vol. 2018, 2018.
[37] B. Yang, J. Li, J. Wang, H. Xu, S. Guang, and C. Li, "Poly (vinyl pyrrolidone‐co‐octavinyl polyhedral oligomeric silsesquioxane) hybrid nanocomposites: Preparation, thermal properties, and Tg improvement mechanism," Journal of Applied Polymer Science, vol. 111, no. 6, pp. 2963-2969, 2009.
[38] E. Abdelrazek, A. Abdelghany, S. Badr, and M. Morsi, "Morphological, thermal and electrical properties of (PEO/PVP)/Au nanocomposite before and after gamma-irradiation," Journal of Research Updates in Polymer Science, vol. 6, no. 2, pp. 45-54, 2017.
[39] M. Day, A. Nawaby, and X. Liao, "A DSC study of the crystallization behaviour of polylactic acid and its nanocomposites," Journal of Thermal Analysis and Calorimetry, vol. 86, no. 3, pp. 623-629, 2006.
[40] S. A. Mansour, "Study of thermal stabilization for polystyrene/carbon nanocomposites via TG/DSC techniques," Journal of thermal analysis and calorimetry, vol. 112, no. 2, pp. 579-583, 2013.
[41] C. E. Corcione and M. Frigione, "Characterization of nanocomposites by thermal analysis," Materials, vol. 5, no. 12, pp. 2960-2980, 2012.
[42] R. M. Wellen, E. Canedo, and M. S. Rabello, "Nonisothermal cold crystallization of poly (ethylene terephthalate)," Journal of Materials Research, vol. 26, no. 9, pp. 1107-1115, 2011.
[43] Y. H. Hyun, S. T. Lim, H. J. Choi, and M. S. Jhon, "Rheology of poly (ethylene oxide)/organoclay nanocomposites," Macromolecules, vol. 34, no. 23, pp. 8084-8093, 2001.
[44] P. Cassagnau, "Melt rheology of organoclay and fumed silica nanocomposites," Polymer, vol. 49, no. 9, pp. 2183-2196, 2008.
[45] F. Du, R. C. Scogna, W. Zhou, S. Brand, J. E. Fischer, and K. I. Winey, "Nanotube networks in polymer nanocomposites: rheology and electrical conductivity," Macromolecules, vol. 37, no. 24, pp. 9048-9055, 2004.
[46] Q. Zhang and L. A. Archer, "Poly (ethylene oxide)/silica nanocomposites: structure and rheology," Langmuir, vol. 18, no. 26, pp. 10435-10442, 2002.
[47] S. Y. Gu, J. Ren, and Q. F. Wang, "Rheology of poly (propylene)/clay nanocomposites," Journal of Applied Polymer Science, vol. 91, no. 4, pp. 2427-2434, 2004.
[48] Y. Song and Q. Zheng, "Size-dependent linear rheology of silica filled poly (2-vinylpyridine)," Polymer, vol. 130, pp. 74-78, 2017.
[49] H. A. Barnes, "Rheology of emulsions—a review," Colloids and surfaces A: physicochemical and engineering aspects, vol. 91, pp. 89-95, 1994.
[50] J. J. Duffy, C. A. Rega, R. Jack, and S. Amin, "An algebraic approach for determining viscoelastic moduli from creep compliance through application of the Generalised Stokes-Einstein relation and Burgers model," Applied Rheology, vol. 26, no. 1, pp. 10-15, 2016.
[51] B. Herzog, D. J. Gardner, R. Lopez‐Anido, and B. Goodell, "Glass‐transition temperature based on dynamic mechanical thermal analysis techniques as an indicator of the adhesive performance of vinyl ester resin," Journal of applied polymer science, vol. 97, no. 6, pp. 2221-2229, 2005.
[52] V. A. Boudara, D. J. Read, and J. Ramírez, "Reptate rheology software: Toolkit for the analysis of theories and experiments," Journal of Rheology, vol. 64, no. 3, pp. 709-722, 2020.
[53] A. Cardon, Y. Qin, C. Van Vossole, and P. Bouquet, "Prediction of the residual structural integrity of a polymer matrix composite construction element," Mechanics of Time-Dependent Materials, vol. 4, no. 2, pp. 155-167, 2000.
[54] W. K. Goertzen and M. Kessler, "Creep behavior of carbon fiber/epoxy matrix composites," Materials Science and Engineering: A, vol. 421, no. 1-2, pp. 217-225, 2006.
[55] J. Ma et al., "Spatial correlations of entangled polymer dynamics," Physical Review E, vol. 104, no. 2, p. 024503, 2021.
[56] F. M. Gaitho, G. T. Mola, and G. Pellicane, "Computational approach to the study of morphological properties of polymer/fullerene blends in photovoltaics," Physical Sciences Reviews, vol. 3, no. 2, 2018.
[57] T. E. Gartner III and A. Jayaraman, "Modeling and simulations of polymers: a roadmap," Macromolecules, vol. 52, no. 3, pp. 755-786, 2019.
[58] P. R. Schunk, S. Xiong, C. J. Brinker, and R. A. Molecke, "Modeling and simulation of soft-particle colloids under dynamic environmental gradients," Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA …, 2010.
[59] U. Kapoor, A. Kulshreshtha, and A. Jayaraman, "Development of Coarse-Grained Models for Poly (4-vinylphenol) and Poly (2-vinylpyridine): Polymer Chemistries with Hydrogen Bonding," Polymers, vol. 12, no. 11, p. 2764, 2020.
[60] S. Arichi, "Studies of poly-2-vinylpyridine. iii. intrinsic viscosity and molecular weight," Bulletin of the Chemical Society of Japan, vol. 39, no. 3, pp. 439-446, 1966.
[61] M. E. Lewis, S. Nan, W. Yunan, J. Li, J. W. Mays, and N. Hadjichristidis, "Analysis of solution properties of polystyrene in 2-butanone in the framework of the hard-sphere model," Macromolecules, vol. 24, no. 25, pp. 6686-6689, 1991.
[62] R. Poling-Skutvik, K. I. S. Mongcopa, A. Faraone, S. Narayanan, J. C. Conrad, and R. Krishnamoorti, "Structure and dynamics of interacting nanoparticles in semidilute polymer solutions," Macromolecules, vol. 49, no. 17, pp. 6568-6577, 2016.
[63] A. Lemak and N. Balabaev, "On the Berendsen thermostat," Molecular Simulation, vol. 13, no. 3, pp. 177-187, 1994.
[64] G. Beaucage, "Small-angle scattering from polymeric mass fractals of arbitrary mass-fractal dimension," Journal of applied crystallography, vol. 29, no. 2, pp. 134-146, 1996.
[65] B. Hammouda, "Analysis of the Beaucage model," Journal of Applied Crystallography, vol. 43, no. 6, pp. 1474-1478, 2010.
[66] G. Beaucage, "Approximations leading to a unified exponential/power-law approach to small-angle scattering," Journal of Applied Crystallography, vol. 28, no. 6, pp. 717-728, 1995.
[67] Z.-H. Shi et al., "Kinetics and Mechanism of In Situ Metallization of Bulk DNA Films," Nanoscale research letters, vol. 17, no. 1, pp. 1-10, 2022.
[68] M. Kotlarchyk and S. H. Chen, "Analysis of small angle neutron scattering spectra from polydisperse interacting colloids," The Journal of chemical physics, vol. 79, no. 5, pp. 2461-2469, 1983.
[69] M. Kotlarchyk, R. B. Stephens, and J. S. Huang, "Study of Schultz distribution to model polydispersity of microemulsion droplets," The Journal of Physical Chemistry, vol. 92, no. 6, pp. 1533-1538, 1988.
[70] A. Guinier, G. Fournet, and K. L. Yudowitch, "Small-angle scattering of X-rays," 1955.
[71] W. Humphrey, A. Dalke, and K. Schulten, "VMD: visual molecular dynamics," Journal of molecular graphics, vol. 14, no. 1, pp. 33-38, 1996.
[72] P. N. Patrone, A. Dienstfrey, A. R. Browning, S. Tucker, and S. Christensen, "Uncertainty quantification in molecular dynamics studies of the glass transition temperature," Polymer, vol. 87, pp. 246-259, 2016.
[73] M. Koziol, K. Fischer, and S. Seiffert, "Origin of the low-frequency plateau and the light-scattering slow mode in semidilute poly (ethylene glycol) solutions," Soft matter, vol. 15, no. 12, pp. 2666-2676, 2019.
[74] A. P. Holt, J. R. Sangoro, Y. Wang, A. L. Agapov, and A. P. Sokolov, "Chain and segmental dynamics of poly (2-vinylpyridine) nanocomposites," Macromolecules, vol. 46, no. 10, pp. 4168-4173, 2013.
[75] P. Fayon and L. Sarkisov, "Structure and dynamics of water in molecular models of hydrated polyvinylamine membranes," Physical Chemistry Chemical Physics, vol. 21, no. 48, pp. 26453-26465, 2019.
[76] A. El Kaffas, D. Bekah, M. Rui, J. C. Kumaradas, and M. C. Kolios, "Investigating longitudinal changes in the mechanical properties of MCF-7 cells exposed to paclitaxol using particle tracking microrheology," Physics in Medicine & Biology, vol. 58, no. 4, p. 923, 2013.
[77] K. L. Chong et al., "Crossover from ballistic to diffusive vortex motion in convection," arXiv preprint arXiv:1902.09223, 2019.
[78] N. Gnan and E. Zaccarelli, "The microscopic role of deformation in the dynamics of soft colloids," Nature Physics, vol. 15, no. 7, pp. 683-688, 2019.
[79] L. Wang, J. Ma, W. Hong, H. Zhang, and J. Lin, "Nanoscale diffusion of polymer-grafted nanoparticles in entangled polymer melts," Macromolecules, vol. 53, no. 19, pp. 8393-8399, 2020.
[80] D. E. Dunstan, "The viscosity-radius relationship for concentrated polymer solutions," Scientific reports, vol. 9, no. 1, pp. 1-9, 2019.
指導教授 陳儀帆(Yi-Fan Chen) 審核日期 2022-9-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明