博碩士論文 109326004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:100.28.227.63
姓名 李杰穎(Chieh-Ying Lee)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 季節效應對沼液沼渣中抗生素抗性基因豐度之影響
(Seasonal effect on the abundance of antibiotic resistance genes harbored in biogas residues)
相關論文
★ 埔心溪補助灌溉水水質與渠道底泥重金屬含量調查分析★ 桃園航空城三所國小周界大氣PAHs濃度探討
★ 無塵室揮發性有機氣體異味調查探討 -以某晶圓級封裝廠為例★ 利用土壤植栽與固相微萃取探討植作對非離子態有機污染物之吸收模式
★ 零價鐵與硫酸鹽的添加對於水田根圈環境汞 之生物有效性與菌相組成的影響★ 以紫外光/二氧化鈦光催化降解程序去除水溶液相內分泌干擾物質壬基苯酚之研究
★ 異化性鐵還原狀態下非生物性汞氧化還原 作用及其對地下水水質之影響★ 水溶液相中多壁奈米碳管分散懸浮與抑菌效果之相關性探討
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用-以北投垃圾焚化爐為例★ 以淨水污泥灰及廢玻璃為矽鋁源合成MCM-41並應用於重鉻酸鹽吸附之研究
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用 -以台中火力發電廠為例★ 細胞固定化影響厭氧氨氧化程序脫氮效能之研究
★ 藉由非抗性模式細菌對鎘之攝取機制探討量子點的生態毒性潛勢★ 利用生物性聚合物交聯所成穿透式網絡結構穩定污染土壤中之重金屬(鉛、鉻、鎘)
★ 蚯蚓處理加速堆肥廚餘去化可行性評估-以臺北市為例★ 氣相層析三段四極柱串聯質譜儀應用於多溴二苯醚環境樣品之分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 抗生素常用於動物作為生長促進劑,已知用在動物身上的抗生素表明並未完全利用,在抗生素抗性基因(ARGs)產生的傳播下抗生素抗藥性(Antimicrobial resistance, AMR)的問題隨之而來,倘若新的抗生素研發無法跟上現在情勢腳步,無藥可醫不會是未來式,恐怕成為了現在式,ARGs因此也被賦予新興污染物代名詞。
近年國內推行肥份資源再利用計畫,將厭氧消化後動物糞尿取代有機化肥,在消化設施操作條件中、常溫最為普遍。有鑑於抗生素、抗生素抗性基因在沼液沼渣中潛在性不得而知,過往多數文獻對於溫度的機制在堆肥中針對抗生素、抗生素抗性基因帶來的抗藥性進行滅活、降解有所結果,不同於堆肥,厭氧消化也可比擬。
本研究調查北至南17間含動物豬、牛沼液沼渣畜牧場,季節氣溫促成ARGs/MGE的變化在相對豐度中相比冬季,夏季總四環素類抗性基因富集(p <.01);臨床常見的β-內酰胺類則不一致,似乎較能因氣溫而有削減趨勢,大多數都是冬季高於夏季(Σbla, p < .001; blaTEM, p < .01; blaSHV, p < .001);intI1在spearman分析表明夏季促成水平基因轉移機率提高,相對豐度與MGE正相關的ARGs (sul1, p < 0.01; sul2, p < 0.01; tetO, p < 0.01)正相關性,MGE整合酶的高度豐度對其它抗性基因豐度的介導能使環境系統抗藥性的提高。若單一季節拆開來看動物之間相比幾乎無差異性,即使溫度差異性不大,實則這些ARGs/MGE的豐度大多都被季節氣溫給影響。季節上溫度差距不大,表現的趨勢如文獻所述溫度影響ARGs/MGE的差異性。
事實上新型態肥料–沼液沼渣作為取代過往有機化肥成為肥料中減碳、節省成本的先驅,符合Recycle (循環回收)、Reuse (物盡其用)、Reduce (減少使用),不過目前似乎在探討沼液沼渣中ARGs/MGE的影響因子還是有些侷限性,為了後續在探討環境公衛所帶來的風險潛勢,沼液沼渣再利用計畫的施行必須未雨綢繆發展適當的處理配套方法。
摘要(英) Antimicrobials are commonly used in animals as growth promoters. Antibiotics known to be used in animals have been shown to be underutilized, and the problem of Antimicrobial resistance (AMR) has ensued due to the spread of antibiotic resistance genes (ARGs) , if the research and development of new antibiotics cannot keep up with the current situation, no cure will not be the future, and it may become the present. Therefore, ARGs are also given a synonym for emerging pollutants.
In recent years, China has promoted the reuse of fertilizer resources, replacing organic fertilizers with animal manure after anaerobic digestion. Among the operating conditions of digestion facilities, normal temperature is the most common. In view of the fact that the potential of antibiotics and antibiotic resistance genes in biogas residues is unknown, most of the previous literatures have found that the mechanism of temperature inactivates and degrades the resistance brought about by antibiotics and antibiotic resistance genes in compost. , unlike composting, anaerobic digestion is also comparable.
In this study, 17 livestock farms containing animal pigs and bovine biogas residues were investigated from north to south. Seasonal temperature contributed to the change of ARGs/MGE in relative abundance compared with winter and summer total tetracycline resistance gene enrichment (p <.01 ); clinically common β-lactams are inconsistent, and seem to have a tendency to decrease due to temperature, most of which are higher in winter than in summer (Σbla, p < .001; blaTEM, p < .01; blaSHV, p < .001); intI1 in spearman analysis showed that the probability of horizontal gene transfer increased in summer, and the relative abundance of ARGs positively correlated with MGE (sul1, p < 0.01; sul2, p < 0.01; tetO, p < 0.01) was positively correlated, MGE The high abundance of integrase can mediate the abundance of other resistance genes, which can increase the resistance of environmental systems. If a single season is taken apart, there is almost no difference between animals. Even if the temperature difference is not large, the abundance of these ARGs/MGEs is mostly affected by the seasonal temperature. There is little difference in temperature between seasons, and the trend of the performance is as mentioned in the literature that temperature affects the difference of ARGs/MGE.
In fact, a new type of fertilizer – biogas residues is a pioneer in reducing carbon and saving costs in fertilizers as a substitute for organic fertilizers in the past. It seems that there are still some limitations in exploring the influence factors of ARGs/MGE in biogas residues. In order to discuss the risk potential brought by environmental sanitation in the future, the implementation of the biogas residues reuse plan must develop appropriate treatment in advance Supporting method.
關鍵字(中) ★ 沼液沼渣
★ 厭氧消化
★ 抗生素抗性基因
★ 季節性
關鍵字(英) ★ Biogas residues
★ Anaerobic digestion
★ Antibiotic resistance genes
★ Seasonal
論文目次 摘要 i
ABSTRACT iii
致謝 v
目錄 vii
表目錄 x
圖目錄 xi
第一章 前言 1
1.1 研究緣起 1
1.1.1 抗生素抗藥性議題 1
1.1.2 環境抗藥性背景 1
1.1.3 畜牧業與ARGs之關係 2
1.1.4 前處理程序對於抗藥性之影響 4
1.1.5 沼液沼渣施用促成的抗藥性風險潛在性 4
1.2 研究目的 5
第二章 研究方法 6
2.1 研究流程及架構 6
2.2 沼液沼渣樣品採集 8
2.2.1 沼液沼渣樣品採集 8
2.3 沼液沼渣基本特性分析 10
2.3.1 水質參數(pH/電導度/化學需氧量/鹽度/溶解性有機碳)分析 10
2.3.2 營養鹽(總氮/總磷)含量分析 11
2.3.3 重(類)金屬分析 11
2.4 沼液沼渣目標基因檢測 12
2.4.1 目標基因選定 12
2.4.2 預處理 13
2.4.3 DNA萃取 13
2.4.4 目標基因片段定量 14
2.5 數據分析與比較 21
2.5.1 統計分析 21
2.5.2 其他統計分析與可視化物件 21
2.6 研究設備與試劑 22
第三章 結果與討論 24
3.1 沼液沼渣基本特性 24
3.1.1 基本水質特性分析 24
3.1.2 重(類)金屬分析 26
3.2 單一季節沼液沼渣目標基因豐度 28
3.2.1 冬季目標基因絕對/相對豐度 28
3.2.2 冬季目標基因絕對/相對豐度熱圖 32
3.2.3 夏季目標基因絕對/相對豐度 36
3.2.4 夏季目標基因絕對/相對豐度熱圖 40
3.3 不同季節沼液沼渣中目標基因豐度比較 44
3.3.1 兩季目標基因絕對豐度(豬/牛合併比較) 44
3.3.2 兩季目標基因絕對豐度(豬/牛分開比較) 46
3.3.3 兩季目標基因相對豐度(豬/牛合併比較) 48
3.3.4 兩季目標基因相對豐度(豬/牛分開比較) 50
3.3.5 三季目標基因絕對豐度(豬/牛合併比較) 52
3.3.6 三季目標基因絕對豐度(豬/牛分開比較) 54
3.3.7 三季目標基因相對豐度(豬/牛合併比較) 56
3.3.8 三季目標基因相對豐度(豬/牛分開比較) 58
3.4 沼液沼渣與目標基因ARGs/MGE、環境因子影響性 60
3.4.1 溫度與兩季目標基因絕對豐度Spearman相關性 60
3.4.2 溫度與兩季目標基因相對豐度Spearman相關性 62
3.4.3 溫度與三季目標基因絕對豐度Spearman相關性 64
3.4.4 溫度與三季目標基因相對豐度Spearman相關性 66
3.4.5 冬季豬/牛目標基因相對豐度NMDS分析 68
3.4.6 夏季豬/牛目標基因相對豐度NMDS分析 69
3.4.7 冬季、夏季/豬牛目標基因相對豐度NMDS分析 70
3.4.8 冬季目標基因相對豐度與環境因子冗餘分析 71
3.4.9 夏季目標基因相對豐度與環境因子冗餘分析 73
3.5 沼液沼渣目標基因豐度與環境潛在性 75
3.5.1 沼液沼渣目標ARGs/MGE 75
3.5.2 氣溫因子所帶來的差異性 76
3.5.3 沼液沼渣與環境潛在性 78
3.5.4 研究理念 79
第四章 結論與建議 81
4.1 結論 81
4.2 建議 81
參考文獻 82
附錄 96
附錄一 Real-time PCR 檢量線 96
附錄二 Melting curve 101
附錄三 原始數據 103
附錄四 沼液沼渣不同厭氧消化過程中ARGs/MGE消長規律 112
附錄五 不同季節沼液沼渣中16S rRNA基因絕對豐度 115
附錄六 學位考試委員意見回覆表 116
參考文獻 (1) Organization, W. H. Global action plan on antimicrobial resistance. 2015. https://unfoundation.org/what-we-do/issues/global-health/pandemic-accord-actualizing-ambition-in-2023/?gclid=Cj0KCQjw1_SkBhDwARIsANbGpFsTgagTqJuCrIIocjMQmA4WmBGz2DaVBS8Gj86GjJpa1Y1gL19Yc5saAn_HEALw_wcB (accessed.
(2) Shallcross, L. J.; Howard, S. J.; Fowler, T.; Dayies, S. C. Tackling the threat of antimicrobial resistance: from policy to sustainable action. Philos. Trans. R. Soc. B-Biol. Sci. 2015, 370 (1670), 5, Article; Proceedings Paper. DOI: 10.1098/rstb.2014.0082.
(3) O′Neill, J. Tackling drug-resistant infections globally: final report and recommendations. 2016.
(4) McGowan, J. E. Economic impact of antimicrobial resistance. Emerg. Infect. Dis 2001, 7 (2), 286-292, Article; Proceedings Paper. DOI: 10.3201/eid0702.010228.
(5) San Millan, A. Evolution of Plasmid-Mediated Antibiotic Resistance in the Clinical Context. Trends Microbiol. 2018, 26 (12), 978-985, Review. DOI: 10.1016/j.tim.2018.06.007.
(6) 維基百科. 抗生素抗藥性. 2020.
(7) Islam, M. S.; Hossain, M. J.; Sobur, M. A.; Punom, S. A.; Rahman, A.; Rahman, M. T. A Systematic Review on the Occurrence of Antimicrobial-Resistant Escherichia coli in Poultry and Poultry Environments in Bangladesh between 2010 and 2021. BioMed Research International 2023, 2023.
(8) van Harten, R. M.; Willems, R. J.; Martin, N. I.; Hendrickx, A. P. Multidrug-resistant enterococcal infections: new compounds, novel antimicrobial therapies? Trends Microbiol. 2017, 25 (6), 467-479.
(9) Asadollahi, P.; Razavi, S.; Asadollahi, K.; Pourshafie, M.; Talebi, M. Rise of antibiotic resistance in clinical enterococcal isolates during 2001–2016 in Iran: a review. New microbes and new infections 2018, 26, 92-99.
(10) Ventola, C. L. The antibiotic resistance crisis: part 1: causes and threats. Pharmacy and therapeutics 2015, 40 (4), 277.
(11) Santos, L.; Ramos, F. Antimicrobial resistance in aquaculture: current knowledge and alternatives to tackle the problem. International Journal of Antimicrobial Agents 2018, 52 (2), 135-143.
(12) Shen, Z.; Wang, Y.; Shen, Y.; Shen, J.; Wu, C. Early emergence of mcr-1 in Escherichia coli from food-producing animals. The Lancet infectious diseases 2016, 16 (3), 293.
(13) 王亚楠; 胡永飞; 朱宝利; 焦新安; 高福. 养殖动物及其相关环境耐药组的研究进展. 生物工程学报 2018, 34 (8), 1226-1233.
(14) Dodd, M. C. Potential impacts of disinfection processes on elimination and deactivation of antibiotic resistance genes during water and wastewater treatment. Journal of Environmental Monitoring 2012, 14 (7), 1754-1771.
(15) Schwarz, S.; Loeffler, A.; Kadlec, K. Bacterial resistance to antimicrobial agents and its impact on veterinary and human medicine. Advances in Veterinary Dermatology 2017, 8, 95-110.
(16) Wright, G. D. Antibiotic resistance in the environment: a link to the clinic? Current opinion in microbiology 2010, 13 (5), 589-594.
(17) Sarmah, A. K.; Meyer, M. T.; Boxall, A. B. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 2006, 65 (5), 725-759.
(18) Knapp, C. W.; Engemann, C. A.; Hanson, M. L.; Keen, P. L.; Hall, K. J.; Graham, D. W. Indirect evidence of transposon-mediated selection of antibiotic resistance genes in aquatic systems at low-level oxytetracycline exposures. Environ. Sci. Technol. 2008, 42 (14), 5348-5353.
(19) Martínez, J. L. Antibiotics and antibiotic resistance genes in natural environments. Science 2008, 321 (5887), 365-367.
(20) Sandegren, L. Selection of antibiotic resistance at very low antibiotic concentrations. Upsala journal of medical sciences 2014, 119 (2), 103-107.
(21) Klerks, M. M.; Franz, E.; van Gent-Pelzer, M.; Zijlstra, C.; Van Bruggen, A. H. Differential interaction of Salmonella enterica serovars with lettuce cultivars and plant-microbe factors influencing the colonization efficiency. The ISME journal 2007, 1 (7), 620-631.
(22) McLaughlin, M. R.; Brooks, J. P.; Adeli, A. Characterization of selected nutrients and bacteria from anaerobic swine manure lagoons on sow, nursery, and finisher farms in the Mid‐South USA. Journal of environmental quality 2009, 38 (6), 2422-2430.
(23) McEwen, S. A. Human health importance of use of antimicrobials in animals and its selection of antimicrobial resistance. Antimicrobial Resistance In The Environment. Canada: Wiley-Blackwell 2012, 391-423.
(24) Yuan, W.; Tian, T. T.; Yang, Q. X.; Riaz, L. Transfer potentials of antibiotic resistance genes in Escherichia spp. strains from different sources. Chemosphere 2020, 246, 9, Article. DOI: 10.1016/j.chemosphere.2019.125736.
(25) Zhao, R.; Liu, J.; Feng, J.; Li, X.; Li, B. Microbial community composition and metabolic functions in landfill leachate from different landfills of China. Sci. Total Environ. 2021, 767, 144861.
(26) Bhatt, A. H.; Karanjekar, R. V.; Altouqi, S.; Sattler, M. L.; Hossain, M. D. S.; Chen, V. P. Estimating landfill leachate BOD and COD based on rainfall, ambient temperature, and waste composition: Exploration of a MARS statistical approach. Environ. Technol. Innov. 2017, 8, 1-16, Article. DOI: 10.1016/j.eti.2017.03.003.
(27) K Kocadal 1 , F. B. A., D Battal 1, 2 , S Saygi 1. 重金屬暴露引起的細胞病理學和遺傳毒性效應. Human & Experimental Toxicology ( IF 3.247 ) 2019.
(28) Codina, J. C.; Cazorla, F. M.; Pérez‐García, A.; de Vicente, A. Heavy metal toxicity and genotoxicity in water and sewage determined by microbiological methods. Environmental Toxicology and Chemistry: An International Journal 2000, 19 (6), 1552-1558.
(29) Levy, S. B. Factors impacting on the problem of antibiotic resistance. J. Antimicrob. Chemother. 2002, 49 (1), 25-30, Editorial Material. DOI: 10.1093/jac/49.1.25.
(30) Seiler, C.; Berendonk, T. U. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front. Microbiol. 2012, 3, 10, Review. DOI: 10.3389/fmicb.2012.00399.
(31) Zhang, J.; Xu, Y.; Luo, Y.; Mao, D. Co-selection mechanisms of bacterial resistance to heavy metals and antibiotics. Journal of Agro-Environment Science 2016, 35 (3), 409-418.
(32) Yuan, L.; Li, Z.-H.; Zhang, M.-Q.; Shao, W.; Fan, Y.-Y.; Sheng, G.-P. Mercury/silver resistance genes and their association with antibiotic resistance genes and microbial community in a municipal wastewater treatment plant. Sci. Total Environ. 2019, 657, 1014-1022.
(33) Zhang, J.; Lu, T.; Chai, Y.; Sui, Q.; Shen, P.; Wei, Y. Which animal type contributes the most to the emission of antibiotic resistance genes in large-scale swine farms in China? Sci. Total Environ. 2019, 658, 152-159.
(34) Yang, Q.; Ren, S.; Niu, T.; Guo, Y.; Qi, S.; Han, X.; Liu, D.; Pan, F. Distribution of antibiotic-resistant bacteria in chicken manure and manure-fertilized vegetables. Environmental Science and Pollution Research 2014, 21, 1231-1241.
(35) Nesme, J.; Cécillon, S.; Delmont, T. O.; Monier, J.-M.; Vogel, T. M.; Simonet, P. Large-scale metagenomic-based study of antibiotic resistance in the environment. Current biology 2014, 24 (10), 1096-1100.
(36) Landers, T. F.; Cohen, B.; Wittum, T. E.; Larson, E. L. A review of antibiotic use in food animals: perspective, policy, and potential. Public health reports 2012, 127 (1), 4-22.
(37) Chang, Q.; Wang, W.; Regev‐Yochay, G.; Lipsitch, M.; Hanage, W. P. Antibiotics in agriculture and the risk to human health: how worried should we be? Evolutionary applications 2015, 8 (3), 240-247.
(38) Chen, J.; Yu, Z.; Michel Jr, F. C.; Wittum, T.; Morrison, M. Development and application of real-time PCR assays for quantification of erm genes conferring resistance to macrolides-lincosamides-streptogramin B in livestock manure and manure management systems. Applied and environmental microbiology 2007, 73 (14), 4407-4416.
(39) Selvam, A.; Xu, D.; Zhao, Z.; Wong, J. W. Fate of tetracycline, sulfonamide and fluoroquinolone resistance genes and the changes in bacterial diversity during composting of swine manure. Bioresour. Technol. 2012, 126, 383-390.
(40) Wang, L.; Oda, Y.; Grewal, S.; Morrison, M.; Michel, F. C.; Yu, Z. Persistence of resistance to erythromycin and tetracycline in swine manure during simulated composting and lagoon treatments. Microb. Ecol. 2012, 63, 32-40.
(41) Wang, J.; Ben, W.; Zhang, Y.; Yang, M.; Qiang, Z. Effects of thermophilic composting on oxytetracycline, sulfamethazine, and their corresponding resistance genes in swine manure. Environmental Science: Processes & Impacts 2015, 17 (9), 1654-1660.
(42) Wang, M.; Liu, P.; Xiong, W.; Zhou, Q.; Wangxiao, J.; Zeng, Z.; Sun, Y. Fate of potential indicator antimicrobial resistance genes (ARGs) and bacterial community diversity in simulated manure-soil microcosms. Ecotox. Environ. Safe. 2018, 147, 817-823.
(43) Wu, C.; Shi, L.; Xue, S.; Li, W.; Jiang, X.; Rajendran, M.; Qian, Z. Effect of sulfur-iron modified biochar on the available cadmium and bacterial community structure in contaminated soils. Sci. Total Environ. 2019, 647, 1158-1168.
(44) Dolliver, H.; Gupta, S.; Noll, S. Antibiotic degradation during manure composting. Journal of environmental quality 2008, 37 (3), 1245-1253.
(45) Ray, P.; Chen, C. Q.; Knowlton, K. F.; Pruden, A.; Xia, K. Fate and Effect of Antibiotics in Beef and Dairy Manure during Static and Turned Composting. Journal of Environmental Quality 2017, 46 (1), 45-54, Article. DOI: 10.2134/jeq2016.07.0269.
(46) Shan, S.; Wang, H.; Fang, C.; Chu, Y.; Jiang, L. Effects of adding biochar on tetracycline removal during anaerobic composting of swine manure. Chemistry and Ecology 2018, 34 (1), 86-97.
(47) Chen, J.; Michel, F. C.; Sreevatsan, S.; Morrison, M.; Yu, Z. Occurrence and persistence of erythromycin resistance genes (erm) and tetracycline resistance genes (tet) in waste treatment systems on swine farms. Microb. Ecol. 2010, 60, 479-486.
(48) Marti, R.; Tien, Y.-C.; Murray, R.; Scott, A.; Sabourin, L.; Topp, E. Safely coupling livestock and crop production systems: how rapidly do antibiotic resistance genes dissipate in soil following a commercial application of swine or dairy manure? Applied and environmental microbiology 2014, 80 (10), 3258-3265.
(49) Jindal, A.; Kocherginskaya, S.; Mehboob, A.; Robert, M.; Mackie, R. I.; Raskin, L.; Zilles, J. L. Antimicrobial use and resistance in swine waste treatment systems. Applied and Environmental Microbiology 2006, 72 (12), 7813-7820, Article. DOI: 10.1128/aem.01087-06.
(50) Diehl, D. L.; LaPara, T. M. Effect of Temperature on the Fate of Genes Encoding Tetracycline Resistance and the Integrase of Class 1 Integrons within Anaerobic and Aerobic Digesters Treating Municipal Wastewater Solids. Environ. Sci. Technol. 2010, 44 (23), 9128-9133, Article. DOI: 10.1021/es102765a.
(51) Ma, Y. J.; Wilson, C. A.; Novak, J. T.; Riffat, R.; Aynur, S.; Murthy, S.; Prudens, A. Effect of Various Sludge Digestion Conditions on Sulfonamide, Macrolide, and Tetracycline Resistance Genes and Class I Integrons. Environ. Sci. Technol. 2011, 45 (18), 7855-7861, Article. DOI: 10.1021/es200827t.
(52) Sui, Q. W.; Zhang, J. Y.; Chen, M. X.; Tong, J.; Wang, R.; Wei, Y. S. Distribution of antibiotic resistance genes (ARGs) in anaerobic digestion and land application of swine wastewater. Environmental Pollution 2016, 213, 751-759, Article. DOI: 10.1016/j.envpol.2016.03.038.
(53) Sun, W.; Qian, X.; Gu, J.; Wang, X. J.; Duan, M. L. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure. Sci Rep 2016, 6, 9, Article. DOI: 10.1038/srep30237.
(54) Luo, G.; Li, B.; Li, L. G.; Zhang, T.; Angelidaki, I. Antibiotic Resistance Genes and Correlations with Microbial Community and Metal Resistance Genes in Full-Scale Biogas Reactors As Revealed by Metagenomic Analysis. Environ. Sci. Technol. 2017, 51 (7), 4069-4080, Article. DOI: 10.1021/acs.est.6b05100.
(55) Ray, P.; Chen, C.; Knowlton, K. F.; Pruden, A.; Xia, K. Fate and effect of antibiotics in beef and dairy manure during static and turned composting. Journal of Environmental Quality 2017, 46 (1), 45-54.
(56) Wallace, J. S.; Garner, E.; Pruden, A.; Aga, D. S. Occurrence and transformation of veterinary antibiotics and antibiotic resistance genes in dairy manure treated by advanced anaerobic digestion and conventional treatment methods. Environmental Pollution 2018, 236, 764-772, Article. DOI: 10.1016/j.envpol.2018.02.024.
(57) 張智聖. 抗生素抗性菌與抗性基因在污水處理程序中的動態變化. 國立中央大學 2019.
(58) Yu, J.; Zhao, L.; Feng, J.; Yao, Z.; Huang, K.; Luo, J. Influence factors of batch dry anaerobic digestion for corn stalks-cow dung mixture. Transactions of the Chinese Society of Agricultural Engineering 2018, 34 (15), 215-221.
(59) Pandyaswargo, A. H.; Premakumara, D. G. J. Financial sustainability of modern composting: the economically optimal scale for municipal waste composting plant in developing Asia. International Journal of Recycling of Organic Waste in Agriculture 2014, 3, 1-14.
(60) Garfí, M.; Martí-Herrero, J.; Garwood, A.; Ferrer, I. Household anaerobic digesters for biogas production in Latin America: A review. Renewable and sustainable energy reviews 2016, 60, 599-614.
(61) 林子晞. 沼液沼渣的施用促成農地土壤抗生素抗性基因增殖的可能性探討. 中央大學 2022.
(62) 鄭念媛. 不同料源製成之市售堆肥其抗生素抗性基因含量調查. 中央大學 2022.
(63) 環檢所. 水中化學需氧量檢測方法 密閉式重鉻酸鉀迴流法. 2018. https://www.epa.gov.tw/DisplayFile.aspx?FileID=C9A4AC5E8472614E (accessed.
(64) 鄧教毅. 重金屬生物有效性對於抗生素抗性基因在農地土壤的分佈與持續之影響. 國立中央大學 2018.
(65) Urbanova, M.; Kopecky, J.; Valaskova, V.; Sagova-Mareckova, M.; Elhottova, D.; Kyselkova, M.; Moenne-Loccoz, Y.; Baldrian, P. Development of bacterial community during spontaneous succession on spoil heaps after brown coal mining. FEMS Microbiol. Ecol. 2011, 78 (1), 59-69, Article. DOI: 10.1111/j.1574-6941.2011.01164.x.
(66) Zhu, Y.-G.; Zhu, D.; Delgado-Baquerizo, M.; Su, J.-Q.; Ding, J.; Li, H.; Gillings, M. R.; Penuelas, J. Difference of microbiome and antibiotic resistome between earthworm gut and soil deciphered by a continental-scale survey. 2020.
(67) Ng, L. K.; Martin, I.; Alfa, M.; Mulvey, M. Multiplex PCR for the detection of tetracycline resistant genes. Mol. Cell. Probes 2001, 15 (4), 209-215, Article. DOI: 10.1006/mcpr.2001.0363.
(68) Ahmed, M. O.; Clegg, P. D.; Williams, N. J.; Baptiste, K. E.; Bennett, M. Antimicrobial resistance in equine faecal Escherichia coli isolates from North West England. Ann. Clin. Microbiol. Antimicrob. 2010, 9, 7, Article. DOI: 10.1186/1476-0711-9-12.
(69) Aminov, R. I.; Garrigues-Jeanjean, N.; Mackie, R. I. Molecular ecology of tetracycline resistance: Development and validation of primers for detection of tetracycline resistance genes encoding ribosomal protection proteins. Applied and Environmental Microbiology 2001, 67 (1), 22-32, Article. DOI: 10.1128/aem.67.1.22-32.2001.
(70) Mu, Q. H.; Li, J.; Sun, Y. X.; Mao, D. Q.; Wang, Q.; Luo, Y. Occurrence of sulfonamide-, tetracycline-, plasmid-mediated quinolone- and macrolide-resistance genes in livestock feedlots in Northern China. Environmental Science and Pollution Research 2015, 22 (9), 6932-6940, Article. DOI: 10.1007/s11356-014-3905-5.
(71) Miao, J. J.; Yin, Z. D.; Yang, Y. Q.; Liang, Y. W.; Xu, X. D.; Shi, H. M. Abundance and Dynamic Distribution of Antibiotic Resistance Genes in the Environment Surrounding a Veterinary Antibiotic Manufacturing Site. Antibiotics-Basel 2021, 10 (11), 15, Article. DOI: 10.3390/antibiotics10111361.
(72) Henderson, M.; Ergas, S. J.; Ghebremichael, K.; Gross, A.; Ronen, Z. Occurrence of Antibiotic-Resistant Genes and Bacteria in Household Greywater Treated in Constructed Wetlands. Water 2022, 14 (5), 16, Article. DOI: 10.3390/w14050758.
(73) Lin, H.; Chapman, S. J.; Freitag, T. E.; Kyle, C.; Ma, J. W.; Yang, Y. Y.; Zhang, Z. L. Fate of tetracycline and sulfonamide resistance genes in a grassland soil amended with different organic fertilizers. Ecotox. Environ. Safe. 2019, 170, 39-46, Article. DOI: 10.1016/j.ecoenv.2018.11.059.
(74) Kim, J.; Lim, Y. M.; Jeong, Y. S.; Seol, S. Y. Occurrence of CTX-M-3, CTX-M-15, CTX-M-14, and CTX-M-9 extended-spectrum beta-lactamases in Enterobacteriaceae clinical isolates in Korea. Antimicrobial Agents and Chemotherapy 2005, 49 (4), 1572-1575, Article. DOI: 10.1128/aac.49.4.1572-1575.2005.
(75) Marti, E.; Jofre, J.; Balcazar, J. L. Prevalence of Antibiotic Resistance Genes and Bacterial Community Composition in a River Influenced by a Wastewater Treatment Plant. PLoS One 2013, 8 (10), 8, Article. DOI: 10.1371/journal.pone.0078906.
(76) Xi, C. W.; Zhang, Y. L.; Marrs, C. F.; Ye, W.; Simon, C.; Foxman, B.; Nriagu, J. Prevalence of Antibiotic Resistance in Drinking Water Treatment and Distribution Systems. Applied and Environmental Microbiology 2009, 75 (17), 5714-5718, Article. DOI: 10.1128/aem.00382-09.
(77) Alexander, J.; Bollmann, A.; Seitz, W.; Schwartz, T. Microbiological characterization of aquatic microbiomes targeting taxonomical marker genes and antibiotic resistance genes of opportunistic bacteria. Sci. Total Environ. 2015, 512, 316-325, Article. DOI: 10.1016/j.scitotenv.2015.01.046.
(78) Hembach, N.; Schmid, F.; Alexander, J.; Hiller, C.; Rogall, E. T.; Schwartz, T. Occurrence of the mcr-1 Colistin Resistance Gene and other Clinically Relevant Antibiotic Resistance Genes in Microbial Populations at Different Municipal Wastewater Treatment Plants in Germany. Front. Microbiol. 2017, 8, 11, Article. DOI: 10.3389/fmicb.2017.01282.
(79) Chen, J.; Yu, Z. T.; Michel, F. C.; Wittum, T.; Morrison, M. Development and application of real-time PCR assays for quantification of erm genes conferring resistance to macrolides-lincosamides-streptogramin B in livestock manure and manure management systems. Applied and Environmental Microbiology 2007, 73 (14), 4407-4416, Article. DOI: 10.1128/aem.02799-06.
(80) Luo, Y.; Mao, D. Q.; Rysz, M.; Zhou, D. X.; Zhang, H. J.; Xu, L.; Alvarez, P. J. J. Trends in Antibiotic Resistance Genes Occurrence in the Haihe River, China. Environ. Sci. Technol. 2010, 44 (19), 7220-7225, Article. DOI: 10.1021/es100233w.
(81) Liao, J. Q.; Chen, Y. G. Removal of intl1 and associated antibiotics resistant genes in water, sewage sludge and livestock manure treatments. Rev. Environ. Sci. Bio-Technol. 2018, 17 (3), 471-500, Review. DOI: 10.1007/s11157-018-9469-y.
(82) Xu, S. B.; Chen, M. J.; Feng, T. Z.; Zhan, L.; Zhou, L.; Yu, G. C. Use ggbreak to Effectively Utilize Plotting Space to Deal With Large Datasets and Outliers. Front. Genet. 2021, 12, 7, Article. DOI: 10.3389/fgene.2021.774846.
(83) Zhu, Y.-G.; Zhao, Y.; Zhu, D.; Gillings, M.; Penuelas, J.; Ok, Y. S.; Capon, A.; Banwart, S. Soil biota, antimicrobial resistance and planetary health. Environ. Int. 2019, 131, 105059.
(84) Zhang, R. R.; Wang, X. J.; Gu, J.; Zhang, Y. J. Influence of zinc on biogas production and antibiotic resistance gene profiles during anaerobic digestion of swine manure. Bioresour. Technol. 2017, 244, 63-70, Article. DOI: 10.1016/j.biortech.2017.07.032.
(85) 行政院農業委員會. 肥料種類品目及規格. 2000. https://law.coa.gov.tw/glrsnewsout/LawContent.aspx?id=FL014452 (accessed.
(86) 維基百科. 求和符號. 2023.
(87) 林子晞. 沼液沼渣的施用促成農地土壤抗生素抗性基因增殖的可能性探討. 國立中央大學 2010.
(88) Wolters, B.; Ding, G. C.; Kreuzig, R.; Smalla, K. Full-scale mesophilic biogas plants using manure as C-source: bacterial community shifts along the process cause changes in the abundance of resistance genes and mobile genetic elements. FEMS Microbiol. Ecol. 2016, 92 (2), 17, Article. DOI: 10.1093/femsec/fiv163.
(89) Pal, C.; Bengtsson-Palme, J.; Kristiansson, E.; Larsson, D. J. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC genomics 2015, 16, 1-14.
(90) Liu, L.; Liu, X.; Wang, H.; Zhao, H.; Yu, C.; Leng, J.; Geng, C.; Li, Z. Influence of water quality on sulfonamide resistance gene Sul1. Journal of Agro-Environment Science 2018, 37 (3), 515-519.
(91) Zhang, R. R.; Gu, J.; Wang, X. J.; Qian, X.; Duan, M. L.; Sun, W.; Zhang, Y. J.; Li, H. C.; Li, Y. Relationships between sulfachloropyridazine sodium, zinc, and sulfonamide resistance genes during the anaerobic digestion of swine manure. Bioresour. Technol. 2017, 225, 343-358, Article. DOI: 10.1016/j.biortech.2016.10.057.
(92) Chan, R.; Chiemchaisri, C.; Chiemchaisri, W.; Boonsoongnern, A.; Tulayakul, P. Occurrence of antibiotics in typical pig farming and its wastewater treatment in Thailand. Emerging Contaminants 2022, 8, 21-29.
(93) Youngquist, C. P.; Mitchell, S. M.; Cogger, C. G. Fate of antibiotics and antibiotic resistance during digestion and composting: a review. Journal of environmental quality 2016, 45 (2), 537-545.
(94) Zou, Y. N.; Xiao, Y.; Wang, H.; Fang, T. T.; Dong, P. Y. New insight into fates of sulfonamide and tetracycline resistance genes and resistant bacteria during anaerobic digestion of manure at thermophilic and mesophilic temperatures. J. Hazard. Mater. 2020, 384, 9, Article. DOI: 10.1016/j.jhazmat.2019.121433.
(95) Flores-Orozco, D.; Levin, D.; Kumar, A.; Sparling, R.; Cicek, N. A meta-analysis reveals that operational parameters influence levels of antibiotic resistance genes during anaerobic digestion of animal manures. Sci. Total Environ. 2022, 814, 13, Article. DOI: 10.1016/j.scitotenv.2021.152711.
(96) Flores-Orozco, D.; Patidar, R.; Levin, D.; Kumar, A.; Sparling, R.; Cicek, N. Metagenomic analyses reveal that mesophilic anaerobic digestion substantially reduces the abundance of antibiotic resistance genes and mobile genetic elements in dairy manures. Environ. Technol. Innov. 2023, 30, 13, Article. DOI: 10.1016/j.eti.2023.103128.
(97) Khafipour, A.; Jordaan, E. M.; Flores-Orozco, D.; Khafipour, E.; Levin, D. B.; Sparling, R.; Cicek, N. Response of microbial community to induced failure of anaerobic digesters through overloading with propionic acid followed by process recovery. Frontiers in Bioengineering and Biotechnology 2020, 8, 604838.
(98) Wolak, I.; Czatzkowska, M.; Harnisz, M.; Jastrzębski, J. P.; Paukszto, Ł.; Rusanowska, P.; Felis, E.; Korzeniewska, E. Metagenomic analysis of the long-term synergistic effects of antibiotics on the anaerobic digestion of cattle manure. Energies 2022, 15 (5), 1920.
(99) Roberts, A. P.; Mullany, P. A modular master on the move: the Tn916 family of mobile genetic elements. Trends Microbiol. 2009, 17 (6), 251-258.
(100) Gao, F. Z.; He, L. Y.; He, L. X.; Zou, H. Y.; Zhang, M.; Wu, D. L.; Liu, Y. S.; Shi, Y. J.; Bai, H.; Ying, G. G. Untreated swine wastes changed antibiotic resistance and microbial community in the soils and impacted abundances of antibiotic resistance genes in the vegetables. Sci. Total Environ. 2020, 741, 12, Article. DOI: 10.1016/j.scitotenv.2020.140482.
(101) Gao, F. Z.; He, L. Y.; Bai, H.; He, L. X.; Zhang, M.; Chen, Z. Y.; Liu, Y. S.; Ying, G. G. Airborne bacterial community and antibiotic resistome in the swine farming environment: Metagenomic insights into livestock relevance, pathogen hosts and public risks. Environ. Int. 2023, 172, 11, Article. DOI: 10.1016/j.envint.2023.107751.
(102) Dong, L.; Meng, L.; Liu, H.; Wu, H.; Hu, H.; Zheng, N.; Wang, J.; Schroyen, M. Effect of therapeutic administration of β-lactam antibiotics on the bacterial community and antibiotic resistance patterns in milk. Journal of Dairy Science 2021, 104 (6), 7018-7025.
(103) Liu, Y. T.; Zheng, L.; Cai, Q. J.; Xu, Y. B.; Xie, Z. F.; Liu, J. Y.; Ning, X. N. Simultaneous reduction of antibiotics and antibiotic resistance genes in pig manure using a composting process with a novel microbial agent. Ecotox. Environ. Safe. 2021, 208, 11, Article. DOI: 10.1016/j.ecoenv.2020.111724.
(104) Cheng, W.; Li, J.; Wu, Y.; Xu, L.; Su, C.; Qian, Y.; Zhu, Y.-G.; Chen, H. Behavior of antibiotics and antibiotic resistance genes in eco-agricultural system: a case study. J. Hazard. Mater. 2016, 304, 18-25.
(105) Han, B.; Yang, F.; Tian, X.; Mu, M.; Zhang, K. Tracking antibiotic resistance gene transfer at all seasons from swine waste to receiving environments. Ecotox. Environ. Safe. 2021, 219, 112335.
(106) Sun, C. X.; Li, W.; Chen, Z.; Qin, W. T.; Wen, X. H. Responses of antibiotics, antibiotic resistance genes, and mobile genetic elements in sewage sludge to thermal hydrolysis pre-treatment and various anaerobic digestion conditions. Environ. Int. 2019, 133, 11, Article. DOI: 10.1016/j.envint.2019.105156.
(107) Liu, M. M.; Zhang, Y.; Yang, M.; Tian, Z.; Ren, L. R.; Zhang, S. J. Abundance and Distribution of Tetracycline Resistance Genes and Mobile Elements in an Oxytetracycline Production Wastewater Treatment System. Environ. Sci. Technol. 2012, 46 (14), 7551-7557, Article. DOI: 10.1021/es301145m.
(108) Sun, W.; Gu, J.; Wang, X.; Qian, X.; Peng, H. Solid-state anaerobic digestion facilitates the removal of antibiotic resistance genes and mobile genetic elements from cattle manure. Bioresour. Technol. 2019, 274, 287-295.
(109) Han, Z. M.; Feng, H. D.; Luan, X.; Shen, Y. P.; Ren, L. R.; Deng, L. J.; Larsson, D. G. J.; Gillings, M.; Zhang, Y.; Yang, M. Three-Year Consecutive Field Application of Erythromycin Fermentation Residue Following Hydrothermal Treatment: Cumulative Effect on Soil Antibiotic Resistance Genes. Engineering 2022, 15, 78-88, Article. DOI: 10.1016/j.eng.2022.05.011.
(110) Chee‐Sanford, J. C.; Mackie, R. I.; Koike, S.; Krapac, I. G.; Lin, Y. F.; Yannarell, A. C.; Maxwell, S.; Aminov, R. I. Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. Journal of environmental quality 2009, 38 (3), 1086-1108.
(111) Nigro, S. J.; Farrugia, D. N.; Paulsen, I. T.; Hall, R. M. A novel family of genomic resistance islands, AbGRI2, contributing to aminoglycoside resistance in Acinetobacter baumannii isolates belonging to global clone 2. J. Antimicrob. Chemother. 2013, 68 (3), 554-557.
(112) Guo, X.-p.; Liu, X.; Niu, Z.-s.; Lu, D.-p.; Zhao, S.; Sun, X.-l.; Wu, J.-y.; Chen, Y.-r.; Tou, F.-y.; Hou, L. Seasonal and spatial distribution of antibiotic resistance genes in the sediments along the Yangtze Estuary, China. Environmental Pollution 2018, 242, 576-584.
(113) Xu, Y.; Xu, J.; Mao, D. Q.; Luo, Y. Effect of the selective pressure of sub-lethal level of heavy metals on the fate and distribution of ARGs in the catchment scale. Environmental Pollution 2017, 220, 900-908, Article. DOI: 10.1016/j.envpol.2016.10.074.
(114) Silva, F.; Queiroz, J. A.; Domingues, F. C. Evaluating metabolic stress and plasmid stability in plasmid DNA production by Escherichia coli. Biotechnology advances 2012, 30 (3), 691-708.
(115) Liao, H.; Lu, X.; Rensing, C.; Friman, V. P.; Geisen, S.; Chen, Z.; Yu, Z.; Wei, Z.; Zhou, S.; Zhu, Y. Hyperthermophilic composting accelerates the removal of antibiotic resistance genes and mobile genetic elements in sewage sludge. Environ. Sci. Technol. 2018, 52 (1), 266-276.
(116) Zhou, J.; Guan, D. W.; Zhou, B. K.; Zhao, B. S.; Ma, M. C.; Qin, J.; Jiang, X.; Chen, S. F.; Cao, F. M.; Shen, D. L.; et al. Influence of 34-years of fertilization on bacterial communities in an intensively cultivated black soil in northeast China. Soil Biol. Biochem. 2015, 90, 42-51, Article. DOI: 10.1016/j.soilbio.2015.07.005.
(117) Pan, J. M.; Zheng, N.; An, Q. R.; Li, Y. Y.; Sun, S. Y.; Zhang, W. H.; Song, X. Effects of cadmium and copper mixtures on antibiotic resistance genes in rhizosphere soil. Ecotox. Environ. Safe. 2023, 259, 13, Article. DOI: 10.1016/j.ecoenv.2023.115008.
(118) Pan, X.; Chen, Z. Y.; Zhai, W. L.; Dong, L.; Lin, L.; Li, Y.; Yang, Y. Y. Distribution of antibiotic resistance genes in the sediments of Erhai Lake, Yunnan-Kweichow Plateau, China: Their linear relations with nonpoint source pollution discharges from 26 tributaries. Environmental Pollution 2023, 316, 7, Article. DOI: 10.1016/j.envpol.2022.120471.
(119) Pal, C.; Asiani, K.; Arya, S.; Rensing, C.; Stekel, D. J.; Larsson, D. J.; Hobman, J. L. Metal resistance and its association with antibiotic resistance. Advances in microbial physiology 2017, 70, 261-313.
(120) Levy, S. Active efflux, a common mechanism for biocide and antibiotic resistance. Journal of applied microbiology 2002, 92 (s1), 65S-71S.
(121) Nies, D. H. Efflux-mediated heavy metal resistance in prokaryotes. FEMS microbiology reviews 2003, 27 (2-3), 313-339.
(122) Imran, M.; Das, K. R.; Naik, M. M. Co-selection of multi-antibiotic resistance in bacterial pathogens in metal and microplastic contaminated environments: An emerging health threat. Chemosphere 2019, 215, 846-857, Article. DOI: 10.1016/j.chemosphere.2018.10.114.
(123) Rosenfeld, C. S. Gut Dysbiosis in Animals Due to Environmental Chemical Exposures. Front. Cell. Infect. Microbiol. 2017, 7, 17, Review. DOI: 10.3389/fcimb.2017.00396.
(124) Zhao, X. Q.; Huang, J.; Lu, J.; Sun, Y. Study on the influence of soil microbial community on the long-term heavy metal pollution of different land use types and depth layers in mine. Ecotox. Environ. Safe. 2019, 170, 218-226, Article. DOI: 10.1016/j.ecoenv.2018.11.136.
(125) Xie, W. Y.; Shen, Q.; Zhao, F. Antibiotics and antibiotic resistance from animal manures to soil: a review. European journal of soil science 2018, 69 (1), 181-195.
(126) Cheng, W. X.; Li, J. N.; Wu, Y.; Xu, L. K.; Su, C.; Qian, Y. Y.; Zhu, Y. G.; Chen, H. Behavior of antibiotics and antibiotic resistance genes in eco-agricultural system: A case study. J. Hazard. Mater. 2016, 304, 18-25, Article. DOI: 10.1016/j.jhazmat.2015.10.037.
(127) Chen, Q. L.; An, X. L.; Li, H.; Su, J. Q.; Ma, Y. B.; Zhu, Y. G. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil. Environ. Int. 2016, 92-93, 1-10, Article. DOI: 10.1016/j.envint.2016.03.026.
(128) Cerqueira, F.; Matamoros, V.; Bayona, J.; Pina, B. Antibiotic resistance genes distribution in microbiomes from the soil-plant-fruit continuum in commercial Lycopersicon esculentum fields under different agricultural practices. Sci. Total Environ. 2019, 652, 660-670, Article. DOI: 10.1016/j.scitotenv.2018.10.268.
(129) Hou, J.; Wan, W. N.; Mao, D. Q.; Wang, C.; Mu, Q. H.; Qin, S. Y.; Luo, Y. Occurrence and distribution of sulfonamides, tetracyclines, quinolones, macrolides, and nitrofurans in livestock manure and amended soils of Northern China. Environmental Science and Pollution Research 2015, 22 (6), 4545-4554, Article. DOI: 10.1007/s11356-014-3632-y.
(130) Kang, Y. J.; Hao, Y. Y.; Shen, M.; Zhao, Q. X.; Li, Q.; Hu, J. Impacts of supplementing chemical fertilizers with organic fertilizers manufactured using pig manure as a substrate on the spread of tetracycline resistance genes in soil. Ecotox. Environ. Safe. 2016, 130, 279-288, Article. DOI: 10.1016/j.ecoenv.2016.04.028.
(131) Rahman, M. M.; Shan, J.; Yang, P. P.; Shang, X. X.; Xia, Y. Q.; Yan, X. Y. Effects of long-term pig manure application on antibiotics, abundance of antibiotic resistance genes (ARGs), anammox and denitrification rates in paddy soils. Environmental Pollution 2018, 240, 368-377, Article. DOI: 10.1016/j.envpol.2018.04.135.
(132) Marti, R.; Tien, Y. C.; Murray, R.; Scott, A.; Sabourin, L.; Topp, E. Safely Coupling Livestock and Crop Production Systems: How Rapidly Do Antibiotic Resistance Genes Dissipate in Soil following a Commercial Application of Swine or Dairy Manure? Applied and Environmental Microbiology 2014, 80 (10), 3258-3265, Article. DOI: 10.1128/aem.00231-14.
(133) Hong, P. Y.; Yannarell, A. C.; Dai, Q. H.; Ekizoglu, M.; Mackie, R. I. Monitoring the Perturbation of Soil and Groundwater Microbial Communities Due to Pig Production Activities. Applied and Environmental Microbiology 2013, 79 (8), 2620-2629, Article. DOI: 10.1128/aem.03760-12.
(134) Armalyte, J.; Skerniskyte, J.; Bakiene, E.; Krasauskas, R.; Siugzdiniene, R.; Kareiviene, V.; Kerziene, S.; Klimiene, I.; Suziedeliene, E.; Ruzauskas, M. Microbial Diversity and Antimicrobial Resistance Profile in Microbiota From Soils of Conventional and Organic Farming Systems. Front. Microbiol. 2019, 10, 12, Article. DOI: 10.3389/fmicb.2019.00892.
(135) Rothrock Jr, M. J.; Keen, P. L.; Cook, K. L.; Durso, L. M.; Franklin, A. M.; Dungan, R. S. How should we be determining background and baseline antibiotic resistance levels in agroecosystem research? Journal of environmental quality 2016, 45 (2), 420-431.
(136) He, P. J.; Zhou, Y. Z.; Shao, L. M.; Huang, J. H.; Yang, Z.; Lu, F. The discrepant mobility of antibiotic resistant genes: Evidence from their spatial distribution in sewage sludge flocs. Sci. Total Environ. 2019, 697, 8, Article. DOI: 10.1016/j.scitotenv.2019.134176.
(137) Lin, Z. B.; Yuan, T.; Zhou, L.; Cheng, S.; Qu, X.; Lu, P.; Feng, Q. Y. Impact factors of the accumulation, migration and spread of antibiotic resistance in the environment. Environ. Geochem. Health 2021, 43 (5), 1741-1758, Review. DOI: 10.1007/s10653-020-00759-0.
(138) Huang, X.; Zheng, J.; Tian, S.; Liu, C.; Liu, L.; Wei, L.; Fan, H.; Zhang, T.; Wang, L.; Zhu, G. Higher temperatures do not always achieve better antibiotic resistance gene removal in anaerobic digestion of swine manure. Applied and environmental microbiology 2019, 85 (7), e02878-02818.
(139) Wolters, B.; Ding, G.-C.; Kreuzig, R.; Smalla, K. Full-scale mesophilic biogas plants using manure as C-source: bacterial community shifts along the process cause changes in the abundance of resistance genes and mobile genetic elements. FEMS Microbiol. Ecol. 2016, 92 (2), fiv163.
(140) Yang, F.; Han, B.; Gu, Y.; Zhang, K. Swine liquid manure: a hotspot of mobile genetic elements and antibiotic resistance genes. Sci Rep 2020, 10 (1), 15037.
(141) Zhang, R.; Gu, J.; Wang, X.; Qian, X.; Duan, M.; Sun, W.; Zhang, Y.; Li, H.; Li, Y. Relationships between sulfachloropyridazine sodium, zinc, and sulfonamide resistance genes during the anaerobic digestion of swine manure. Bioresour. Technol. 2017, 225, 343-348.
(142) Li, M. M.; Ray, P.; Knowlton, K. F.; Pruden, A.; Xia, K.; Teets, C.; Du, P. Fate of pirlimycin and antibiotic resistance genes in dairy manure slurries in response to temperature and pH adjustment. Sci. Total Environ. 2020, 710, 136310.
(143) Zhang, Q.; Xu, J.; Wang, X.; Zhu, W.; Pang, X.; Zhao, J. Changes and distributions of antibiotic resistance genes in liquid and solid fractions in mesophilic and thermophilic anaerobic digestion of dairy manure. Bioresour. Technol. 2021, 320, 124372.
(144) Resende, J. A.; Diniz, C.; Silva, V.; Otenio, M.; Bonnafous, A.; Arcuri, P.; Godon, J. J. Dynamics of antibiotic resistance genes and presence of putative pathogens during ambient temperature anaerobic digestion. Journal of applied microbiology 2014, 117 (6), 1689-1699.
(145) Flores-Orozco, D.; Patidar, R.; Levin, D.; Kumar, A.; Sparling, R.; Cicek, N. Metagenomic analyses reveal that mesophilic anaerobic digestion substantially reduces the abundance of antibiotic resistance genes and mobile genetic elements in dairy manures. Environ. Technol. Innov. 2023, 30, 103128.
(146) Flores-Orozco, D.; Patidar, R.; Levin, D. B.; Sparling, R.; Kumar, A.; Çiçek, N. Effect of mesophilic anaerobic digestion on the resistome profile of dairy manure. Bioresour. Technol. 2020, 315, 123889.
(147) Gillings, M. R. Integrons: past, present, and future. Microbiol. Mol. Biol. Rev. 2014, 78 (2), 257-277.
指導教授 林居慶(Chu-Ching Ling) 審核日期 2023-8-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明