博碩士論文 109326010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:18.116.42.149
姓名 陳偉桓(Wei-Huan Chen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 燃煤電廠與水泥廠之汞排放特性與質量流布探討
(Characteristics of mercury emissions and mass flows in coal-fired power plant and cement plant)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-8-1以後開放)
摘要(中) 本研究針對燃煤電廠及水泥廠進行汞質量流布與平衡調查,及其煙道氣之汞排放特性進行探討,並同時採集其製程副產物,用以深究循環經濟下,因燃煤電廠之設備操作影響汞之流向,而水泥廠接收不穩定汞濃度之飛灰做為再生物料使用,於此情形下之汞質量流布。本研究燃煤電廠之煙道氣汞濃度介於0.010 ~ 0.141 μg/Nm3之間,其中以元素汞為主要排放汞物種,且粒狀汞之排放濃度相對穩定,但粒狀物上的汞含量介於0.005 ~ 0.030 mg Hg/g PM,遠高於飛灰之汞含量。電廠中主要汞來源為煤炭,輸入超過98%之總汞輸入量,而海水平均貢獻1.4%之總汞輸入量;而汞主要以飛灰及脫硫海水為主要輸出形式,分別佔31.4% ~ 91.2%與2.33% ~ 63.4%。汞質量流布變化藉由飛灰之特性分析瞭解,飛灰之汞富集能力與其捕捉氯及硫之多寡有關,更進一步由煤炭氯之含量得知,氯高度限制飛灰之汞富集能力,因高溫下產生之HCl可直接與Hg0反應,但硫因為高溫含氧燃燒使得SOx生成,其與汞在吸附點位上為競爭關係,須將硫進一步轉化才能協助捕捉Hg0。水泥廠汞輸入主要以石灰石(17.4 g/hr)為主,其次為鐵渣(9.23 g/hr),再者為煤灰(6.71g/hr),由此可見煤灰的使用,改變了水泥廠汞輸入結構;而輸出以熟料為大宗,輸出流率為3.01 g/hr並佔總輸出之66.3%,而煙道氣之汞輸出為1.53 g/hr,佔輸出之33.7%。造成汞質量輸入/輸出之差距以及較低之汞排放濃度與係數(煙囪之汞排放濃度為4.78 μg/Nm3,汞排放係數為7.6 mg Hg/ton clinker)之原因,可能源自於飛灰具有較高之汞富集能力,並透過飛灰回流系統將汞留存於系統之中,因此若是電廠之汞輸出以飛灰為主,於其再利用過程中,將改變水泥生產系統之汞輸入結構,並增加汞輸入量(煤灰汞輸入占總輸入之16.4%),值得進一步探討。
摘要(英) This study investigates the characteristics of mercury emitted from a coal-fired power plant and a cement plant. Also, the feeding materials and products of the processes are sampled to investigate how the circular economy affects the distribution and mass balance of mercury in the cement plant. For the coal fired power plant, the HgT concentration emitted from the stack ranges from 0.010 to 0.141 μg /Nm3 while the emission of HgP is relatively stable. The mercury content on the particulate matter ranges from 0.005 to 0.030 mg Hg/g PM, which is much higher than the mercury content in fly ash. The majority of mercury input is from coal, accounting for 98% of input and the rest is from seawater applied for SOx removal. The mercury output include fly ash and desulfurized seawater, accounting for 31.4% ~ 91.2% and 2.33% ~ 63.4%, respectively. The variation of mercury mass distribution is investigated by analyzing the characteristics of fly ash and the mercury enrichment of fly ash is related to the chlorine and sulfur contents. Due to the high operating temperature and the presence of oxygen, the chlorine would be transferred to HCl which can directly oxidize Hg0 or incorporate with fly ash to form Hgp, and sulfur would be oxidized to sulfur oxide which would compete for adsorption sites with Hg0. Reactions can change the characteristic of sulfur to assist capturing Hg0. As for the cement plant investigated, the main source of mercury input is limestone (17.4 g/hr), followed by iron slag (9.23 g/hr) and the third is fly ash from coal combustion (6.71g/hr). The use of coal-fired ash changes the mercury input structure of cement plant and also increases the mercury input. The output includes clinker (3.01 g/hr) and the flue gas (1.53 g/hr). The difference in mercury mass input/output and the low mercury emission concentration (4.78 μg/Nm3) and low mercury emission factor (7.6 mg Hg/ton) may be due to the fact that fly ash has a high mercury enrichment capability, and retains significant amount of mercury in the system through the fly ash recycling process Therefore, if the mercury output of the power plant is mainly fly ash, the mercury input structure in the cement plant system will change and the mercury input will increase (coal ash accounts for 16.4% of the total mercury input), and is worthy of further investigation.
關鍵字(中) ★ 汞及其化合物
★ 燃煤電廠
★ 水泥廠
★ 質量流布與平衡
★ 飛灰富集能力
關鍵字(英) ★ Mercury speciation
★ Coal-fired power plants
★ Cement plant
★ Mass distribution and mass balance
★ Enrichment ability of fly ash
論文目次 摘要 I
Abstract II
目錄 IV
圖目錄 VI
表目錄 VII
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的與範疇 2
第二章 文獻回顧 3
2.1 汞排放量結構 3
2.2 汞之基本特性 3
2.3 汞之危害 5
2.4 煙道氣汞之採樣與分析方法 6
2.4.1 ASTM D6784-02(OH Method) 8
2.4.2 USEPA Method 30B 9
2.5 汞之排放控制技術 10
2.6 燃燒過程中汞之轉化 12
第三章 研究方法 14
3.1 研究流程與架構 14
3.2 實廠採樣調查 15
3.2.1 空氣污染防制設備與採樣點 15
3.2.2 樣品採集與分析程序 16
3.3 公式計算 24
第四章 結果與討論 27
4.1 燃煤電廠之汞質量流布調查 27
4.1.1 燃煤電廠之基本資料 27
4.1.2 煙道氣採樣及分析 28
4.1.3 固體樣品採樣及特性分析結果 30
4.1.4 液體樣品採樣及分析 34
4.1.5 燃煤電廠之質量流布 35
4.1.6 燃煤電廠之汞質量平衡 36
4.1.7 流布變化之因素 38
4.1.8 燃煤電廠之汞排放係數 44
4.2 水泥廠之汞質量流布調查 45
4.2.1 水泥廠之基本資料 45
4.2.2 煙道氣採樣及分析 46
4.2.3 固體樣品分析 47
4.2.4 水泥廠之汞質量流布 48
4.2.5 水泥廠之汞質量平衡 50
4.2.6 水泥廠之汞排放係數 51
第五章 結論與建議 52
5.1 結論 52
5.2 建議 53
參考文獻 54
附錄一 OHM樣品分析之檢量線 61
附錄二 氯含量檢測之檢量線 61
附錄三 US EPA Method 30B吸附管採樣紀錄表 62
參考文獻 Agarwalla, H., Senapati, R. N. & Das, T. B. (2021) Mercury emissions and partitioning
from Indian coal-fired power plants. Journal of Environmental Sciences 100, 28-
33.
ASTM (2016) Standard test method for elemental, oxidized, particle-bound and
mercury in flue gas generated from coal-fired stationary sources (Ontario hydro
method). World Trade Organization Technical Barriers to Total Trade (TBT)
Committee.
Bellanger, M., Pichery, C., Aerts, D., Berglund, M., Castaño, A., Čejchanová, M., &
Grandjean, P. (2013). Economic benefits of methylmercury exposure control in
Europe: monetary value of neurotoxicity prevention. Environmental Health, 12(1),
1-10.
Braune, B. M., Outridge, P. M., Fisk, A. T., Muir, D. C. G., Helm, P. A., Hobbs, K., &
Stirling, I. (2005). Persistent organic pollutants and mercury in marine biota of the
Canadian Arctic: an overview of spatial and temporal trends. Science of the Total
Environment, 351, 4-56.
Choi, H.K., Lee, S.H., Kim, S.S., 2009. The effect of activated carbon injection rate on
the removal of elemental mercury in a particulate collector with fabric filters. Fuel
Processing Technology 90 (1), 107–112.
Chou, C. P., Chang, T. C., Chiu, C. H., & Hsi, H. C. (2018). Mercury speciation and
mass distribution of cement production process in Taiwan. Aerosol and Air Quality
Research, 18(11), 2801-2812.
Chou, C. P., Chiu, C. H., Chang, T. C., & Hsi, H. C. (2021). Mercury speciation and
mass distribution of coal-fired power plants in Taiwan using different air pollution
control processes. Journal of the Air & Waste Management Association, 71(5),
553-563.
Evers, D. C., DiGangi, J., Petrlík, J., Buck, D. G., Šamánek, J., Beeler, B., & Regan, K.
(2014). Global mercury hotspots: new evidence reveals mercury contamination
regularly exceeds health advisory levels in humans and fish worldwide. BRI-IPEN
Science Communications Series, 34, 2014.
Finkelman, R. B. (1993). Trace and minor elements in coal. Inorganic geochemistry
(pp. 593-607). Springer, Boston, MA.
Gmelin, L. (1846). Hand Book of Chemistry Vol-6. Cavendish Society; London.
Grandjean, P., Satoh, H., Murata, K., & Eto, K. (2010). Adverse effects of
methylmercury: environmental health research implications. Environmental
Health Perspectives, 118(8), 1137-1145.
Greenwood, N. N., & Earnshaw, A. (2012). Chemistry of the Elements. Elsevier.
Hrdlicka, J.A., Seames, W.S., Mann, M.D., Muggli, D.S., & Horabik, C.A. (2008).
Mercury oxidation in flue gas using gold and palladium catalysts on fabric filters.
Environmental Science & Technology, 42 (17), 6677–6682.
Hsu, C. J., Chen, Y. H., & Hsi, H. C. (2020). Adsorption of aqueous Hg2+ and inhibition
of Hg0 re-emission from actual seawater flue gas desulfurization wastewater by
using sulfurized activated carbon and NaClO. Science of The Total Environment,
711, 135172.
Huang, W. J., Xu, H. M., Qu, Z., Zhao, S. J., Chen, W. M., & Yan, N. Q. (2016).
Significance of Fe2O3 modified SCR catalyst for gas-phase elemental mercury
oxidation in coal-fired flue gas. Fuel Processing Technology, 149, 23-28.
Karagas, M. R., Choi, A. L., Oken, E., Horvat, M., Schoeny, R., Kamai, E., & Korrick,
S. (2012). Evidence on the human health effects of low-level methylmercury
exposure. Environmental Health Perspectives, 120(6), 799-806.
Kaupp, M., & von Schnering, H. G. (1993). Gaseous mercury (IV) fluoride, HgF4: an
ab initio study. Angewandte Chemie International Edition in English, 32(6), 861-
863.
Li, C., Duan, Y., Tang, H., Zhu, C., Li, Y., Zheng, Y. & Liu, M. (2018) Study on the Hg
emission and migration characteristics in coal-fired power plant of China with an
ammonia desulfurization process. Fuel, 211, 621-628.
Li, X., Li, Z., Fu, C., Tang, L., Chen, J., Wu, T., Lin, C., Feng, X. & Fu, X. (2019b)
Fate of mercury in two CFB utility boilers with different fueled coals and air
pollution control devices. Fuel, 251, 651-659.
Li, X., Li, Z., Wu, T., Chen, J., Fu, C., Zhang, L., & Wang, Z. (2019a). Atmospheric
mercury emissions from two pre-calciner cement plants in Southwest China.
Atmospheric Environment, 199, 177-188.
Li, Z., Chen, X., Liu, W., Li, T., Chen, J., Lin, C., Sun, G. & Feng, X. (2019c) Evolution
of four-decade atmospheric mercury release from a coal-fired power plant in
North China. Atmospheric Environment, 213, 526-533.
Lide, D. R. (Ed.). (2004). CRC handbook of chemistry and physics (Vol. 85). Chemical
Rubber Company press.
Mlakar, T. L., Horvat, M., Vuk, T., Stergaršek, A., Kotnik, J., Tratnik, J., & Fajon, V.
(2010). Mercury species, mass flows and processes in a cement plant. Fuel, 89(8),
1936-1945.
Riedel, S., & Kaupp, M. (2009). The highest oxidation states of the transition metal
elements. Coordination Chemistry Reviews, 253(5-6), 606-624.
Riedel, S., Kaupp, M., & Pyykkö, P. (2008). Quantum chemical study of trivalent group
12 fluorides. Inorganic Chemistry, 47(8), 3379-3383.
Rizeq, R. G., Hansell, D. W., & Seeker, W. R. (1994). Predictions of metals emissions
and partitioning in coal-fired combustion systems. Fuel Processing Technology,
39(1-3), 219-236.
Sandheinrich, M. B., Bhavsar, S. P., Bodaly, R. A., Drevnick, P. E., & Paul, E. A. (2011).
Ecological risk of methylmercury to piscivorous fish of the Great Lakes region.
Ecotoxicology, 20(7), 1577-1587.
Srivastava, R. K., Hutson, N., Martin, B., Princiotta, F., & Staudt, J. (2006). Control of
mercury emissions from coal-fired electric utility boilers. Environmental Science
& Technology, 40(5), 1385-1393.
Su, S., Liu, L., Wang, L., Syed-Hassan, S. S. A., Kong, F., Hu, S., Wang, Y., Jiang, L.,
Xu, K., Zhang, A. & Xiang, J. (2017) Mass flow analysis of mercury
transformation and effect of seawater flue gas desulfurization on mercury removal
in a full-scale coal-fired power plant. Energy & Fuels, 31 (10), 11109-11116.
Suarez Negreira, A., & Wilcox, J. (2015). Uncertainty analysis of the mercury oxidation
over a standard SCR catalyst through a lab-scale kinetic study. Energy & Fuels,
29(1), 369-376.
Tang, N. & Pan, S. (2013) Study on mercury emission and migration from large scale
pulverized coal fired boilers. Journal of Fuel Chemistry and Technology, 41 (4),
484-490.
Tang, S., Wang, L., Feng, X., Feng, Z., Li, R., Fan, H. & Li, K. (2016) Actual mercury
speciation and mercury discharges from coal-fired power plants in Inner Mongolia,
Northern China. Fuel, 180, 194-204.
Tao, S., Li, C., Fan, X., Zeng, G., Lu, P., Zhang, X., & Fan, C. (2012). Activated coke
impregnated with cerium chloride used for elemental mercury removal from
simulated flue gas. Chemical Engineering Journal, 210, 547-556.
Uaciquete, D. L., Sakusabe, K., Kato, T., Okawa, H., Sugawara, K., & Nonaka, R.
(2021). Influence of unburned carbon on mercury chemical forms in fly ash
produced from a coal-fired power plant. Fuel, 300, 120802.
UNEP, (2019) "Global Mercury Assessment 2018. "
US EPA, (2012) "National emission standards for hazardous air pollutants from coal-
and oil-fired electric utility steam generating units and standards of performance
for dossil-fuel-fired electric utility, industrial-commercial institutional, and small
industrial-commercial-institutional steam generating units; Final Rule. "
US EPA, (2013) " National emission standards for hazardous air pollutants from coal-
and oil-fired electric utility steam generating units and standards of performance
for fossil-fuel-fired electric utility, industrial-commercial institutional, and small
industrial-commercial-institutional steam generating units; Rules and
Regulations. "
US EPA, (2017) " Method 30B-Determination of total vapor phase mercury emissions
from coal-fired combustion sources using carbon sorbent traps. "
Wang, F., Wang, S., Zhang, L., Yang, H., Wu, Q., & Hao, J. (2014). Mercury enrichment
and its effects on atmospheric emissions in cement plants of China. Atmospheric
environment, 92, 421-428.
Wang, F., Wang, S., Zhang, L., Yang, H., Wu, Q., & Hao, J. (2016). Characteristics of
mercury cycling in the cement production process. Journal of Hazardous
Materials, 302, 27-35.
Wang, S., Zhang, L., Li, G., Wu, Y., Hao, J., Pirrone, N., Sprovieri, F. & Ancora, M.
(2010) Mercury emission and speciation of coal-fired power plants in China.
Atmospheric Chemistry and Physics, 10 (3), 1183-1192.
Wilcox, J., Rupp, E., Ying, S. C., Lim, D. H., Negreira, A. S., Kirchofer, A., & Lee, K.
(2012). Mercury adsorption and oxidation in coal combustion and gasification
processes. International Journal of Coal Geology, 90, 4-20.
Won, J. H., & Lee, T. G. (2012). Estimation of total annual mercury emissions from
cement manufacturing facilities in Korea. Atmospheric Environment, 62, 265-271.
Yang, A. Y., Yan, Z. C., Hui, R. T., Shen, Z. Y., & Zhuang, K. (2015). The abundance,
distribution, and modes of occurrence of Hg in Chinese coals. Science Technology
and Engineering, 15(32), 1671-815.
Yorifuji, T., Tsuda, T., & Harada, M. (2013). Minamata disease: a challenge for
democracy and justice. Late Lessons from Early Warnings: Science, Precaution,
Innovation. Copenhagen, Denmark: European Environment Agency.
Yudovich, Y. E., & Ketris, M. P. (2005). Mercury in coal: A review: Part 1.
Geochemistry. International Journal of Coal Geology, 62(3), 107-134.
Zhang, C., Zhang, Y. H., Wang, Y. M., Wang, D. Y., Luo, C. Z., Xu, F., & He, X. Q.
(2017). Characteristics of mercury emissions from modern dry processing
cement plants in chongqing. Huanjing Kexue, 38(6), 2287-2293.
Zhang, L. (2007). Research on mercury emission measurement and estimate from
combustion resources. Zhejiang University, China (in Chinese).
Zhao, B., Li, Z., Zhou, W., (2019a). Research progress of catalysts for synergistic
denitrification and mercury removal. Zhejiang Xinan Chemical Industrial Group
Cooperation Limited company, 50 (2), 38–41.
Zhao, S., Pudasainee, D., Duan, Y., Gupta, R., Liu, M., & Lu, J. (2019b). A review on
mercury in coal combustion process: Content and occurrence forms in coal,
transformation, sampling methods, emission and control technologies. Progress
in Energy and Combustion Science, 73, 26-64.
Zhou, Q., Duan, Y., Zhu, C., Zhang, J., She, M., Wei, H., & Hong, Y. (2015). Adsorption
equilibrium, kinetics and mechanism studies of mercury on coal-fired fly ash.
Korean Journal of Chemical Engineering, 32(7), 1405-1413.
Zhou, W., Yu, L., Li, D., & Shiau, Y. C. (2016). Thermodynamic effects of alkaline
earth metals on homogenous mercury oxidation during calcium carbonate (CaCO3)
and coal combustion. Toxicological & Environmental Chemistry, 98(3-4), 303-
312.
Zhou, Z. J., Liu, X. W., Zhao, B., Chen, Z. G., Shao, H. Z., Wang, L. L., & Xu, M. H.
(2015). Effects of existing energy saving and air pollution control devices on
mercury removal in coal-fired power plants. Fuel Processing Technology, 131,
99-108.
行政院環保署空氣品質保護處,固定污染源汞排放管制與空品監測成果,2020。
行政院環保署環境檢驗所,水中汞檢測方法-氧化/吹氣捕捉/冷蒸氣原子螢光光
譜法(NIEA W331.50B)。
行政院環境保護署環境檢驗所,排放管道中重金屬檢測方法 (NIEA A302.73C),
2010。
行政院環境保護署環境檢驗所,硫、氯元素含量檢測方法-燃燒管法 (NIEA
M402.01C)。
行政院環境保護署環境檢驗所,碳、氫、硫、氧、氮元素含量檢測方法-元素分
析儀法 (NIEA M403.02B)。
指導教授 張木彬(Moo-Been Chang) 審核日期 2022-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明