博碩士論文 109326023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:34.239.170.244
姓名 劉丞軒(Cheng-Xuan Liu)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 探討生物炭改質對於降低澆灌沼液沼渣土壤所含抗生素抗性基因豐度之效應
(Exploring the effect of biochar modification on reducing the abundance of antibiotic resistance genes contained in soil irrigated with biogas slurries and residues)
相關論文
★ 埔心溪補助灌溉水水質與渠道底泥重金屬含量調查分析★ 桃園航空城三所國小周界大氣PAHs濃度探討
★ 無塵室揮發性有機氣體異味調查探討 -以某晶圓級封裝廠為例★ 利用土壤植栽與固相微萃取探討植作對非離子態有機污染物之吸收模式
★ 零價鐵與硫酸鹽的添加對於水田根圈環境汞 之生物有效性與菌相組成的影響★ 以紫外光/二氧化鈦光催化降解程序去除水溶液相內分泌干擾物質壬基苯酚之研究
★ 異化性鐵還原狀態下非生物性汞氧化還原 作用及其對地下水水質之影響★ 水溶液相中多壁奈米碳管分散懸浮與抑菌效果之相關性探討
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用-以北投垃圾焚化爐為例★ 以淨水污泥灰及廢玻璃為矽鋁源合成MCM-41並應用於重鉻酸鹽吸附之研究
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用 -以台中火力發電廠為例★ 細胞固定化影響厭氧氨氧化程序脫氮效能之研究
★ 藉由非抗性模式細菌對鎘之攝取機制探討量子點的生態毒性潛勢★ 利用生物性聚合物交聯所成穿透式網絡結構穩定污染土壤中之重金屬(鉛、鉻、鎘)
★ 蚯蚓處理加速堆肥廚餘去化可行性評估-以臺北市為例★ 氣相層析三段四極柱串聯質譜儀應用於多溴二苯醚環境樣品之分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來國內環保署所大力推動的畜牧糞尿資源化政策,此舉雖有效改善承受水體的污染狀況以及實現農廢農用的訴求,但從抗生素抗藥性的角度來看,沼渣沼液作為農地肥分對於環境依舊有公共衛生的風險。基於當前政策的限制下,採取適當的管末處理以降低經沼液沼渣施肥後農地抗生素抗藥性的傳播,或許為一可行方案。本研究提出以生物炭應用於經沼液沼渣施肥後土壤中,可能影響重金屬生物有效性及土壤微生物的群落變化導致ARGs在土壤生態系統中的傳播有所減緩的假說,進一步以多種統計分析判斷不同生物炭對於經沼液沼渣澆灌後土壤中的抗生素抗藥性影響程度及影響機制。生物炭特性分析結果顯示以高錳酸鉀改質後生物炭會存在錳官能基並被確實固定在材料上,證實了錳改質生物炭 (M300、M600)的製備。而以不同生物炭吸附水相中Cu(II)、Zn(II)的實驗結果則表明錳改質生物炭 (M300、M600)對兩種重金屬的吸附能力遠高於常規生物炭 (B300、B600),且低溫煅燒而成生物炭吸附能力更強,M300對Cu(II)及Zn(II)的最高吸附容量達到136.986 μmol/g 及133.333 μmol/g,同時發現所有生物炭對於Cu(II)、Zn(II)的吸附模式皆屬於化學吸附。本研究也以不同生物炭進行為期一個月的縮模試驗後,在土壤環境參數分析結果中發現經生物炭處理後的土壤樣品中的TOC及TN顯著上升,但生物可利用性銅含量則顯著下降,與控制組C2相比,加入M300生物炭後可從23%下降至13%,其次在各目標基因檢測中,檢測了1種管家基因 (16S rRNA gene),3種不同的抗生素抗性基因(ermB、sul1、tetM),還有1種流動性基因元素 (intI1),結果發現高溫煅燒之生物炭 (B600、M600)使土壤樣品中的16S rRNA基因豐度隨著培養時間的增加顯著減少 (p < .05),顯示B600、M600生物炭對於降低經沼液沼渣澆灌後土壤中的抗生素抗藥性機制,應屬於減少縮模試驗土壤系統中的菌數進而減少其ARGs/MGE豐度;而在相對豐度的統計結果中,M300生物炭對於土壤中抗生素抗藥性的減輕更為顯著 (p < .05),發現其減輕機制可能為M300生物炭固定了土壤中的Cu(II),使土壤系統中的可被微生物利用的Cu(II)轉換為更不易被利用的相態。相關性分析與冗餘分析中則證實生物可利用性銅含量與ARGs/MGE的強烈正相關 (p < .05),進一步表明沼液沼渣中的重金屬Cu(II)對土壤中的ARGs/MGE豐度具有一定程度上的貢獻。可惜的是並未在次世代定序分析中發現生物炭對於縮模試驗土壤中在以門 (Phylum) 為層級的細菌群落組成所造成的變化,但細究對於可能帶有ARGs的Genus菌屬 (Clostridium、Nocardioides) 的豐度下降趨勢,則可以看到B300及B600組別受到細菌群落的影響可能更多。但根據上述結果而言,生物炭,尤其是改質生物炭應可透過不同機制減輕以沼液沼渣施肥後土壤中的抗生素抗藥性。
摘要(英) In recent years, the domestic Environmental Protection Agency has vigorously promoted the policy of resource utilization of livestock manure. Although this measure has effectively improved its pollution of water bodies and fulfilled the demands of agricultural waste utilization, the commonly used mesophilic and thermophilic anaerobic digestion processes adopted by domestic livestock farmers are not sufficient to effectively reduce the total amount of antibiotic resistance genes (ARGs) in livestock manure. Therefore, the application of biogas slurries and residues as fertilizer in agricultural land may pose risks of promoting the development and dissemination of antibiotic resistance in the environment. Given the limitations of current policies, implementing appropriate post-treatment measures to reduce the spread of antibiotic resistance after the application of biogas slurries and residues as fertilizer on farmland may be a feasible solution. This study proposes a hypothesis that the application of biochar in the soil after the application of biogas slurries and residues as fertilizer may affect the bioavailability of heavy metals and the community changes of soil microorganisms, resulting in a reduction in the spread of ARGs in the soil ecosystem. Furthermore, multiple statistical analyses are conducted to determine the degree and mechanisms of the impact of different biochars on antibiotic resistance in the soil after the application of biogas slurries and residues as irrigation. The experimental results of biochar characterization analysis show that biochar modified with potassium permanganate possesses manganese functional groups that are effectively fixed on the material, confirming the preparation of manganese-modified biochar (M300, M600). The experimental results of different biochar adsorbing Cu(II) and Zn(II) from the aqueous phase indicate that manganese-modified biochar (M300, M600) has a much higher adsorption capacity for both heavy metals compared to conventional biochar (B300, B600), and biochar produced by low-temperature calcination exhibits even stronger adsorption capacity. The maximum adsorption capacities for Cu(II) and Zn(II) reached 136.986 and 133.333 μmol/g, respectively. It is also found that all biochars exhibit chemical adsorption modes for Cu(II) and Zn(II). Subsequently, after conducting a one-month simulated test using different biochars, the analysis of soil environmental parameters reveals a significant increase in total organic carbon (TOC) and total nitrogen (TN) in soil samples treated with biochar. The bioavailable copper (bioCu) content significantly decreased, dropping from 23% to 13% when M300 biochar was added compared to the control group C2. One stewardship gene (16S rRNA gene), three different antibiotic resistance genes (ermB, sul1, tetM), and one mobile genetic element (intI1) were tested, and the results indicated that high-temperature biochars (B600, M600) significantly reduced the abundance of 16S rRNA gene in soil samples with increasing incubation time (p < .05). The results indicate that B600 and M600 biochars likely reduce antibiotic resistance mechanisms in soil after biogas slurry irrigation by decreasing bacterial counts and subsequently reducing ARGs/MGE abundance in the shrinkage test soil
iv
system. In terms of relative abundance, the statistical results indicate that M300 biochar has a more significant effect on reducing antibiotic resistance in the soil (p < .05), and its mechanism may be related to the fixation of Cu(II) in the soil by M300 biochar, transforming the bioavailable Cu(II) in the soil system into a less accessible form for microorganisms. The correlation analysis and redundancy analysis confirm a strong positive correlation (p < .05) between bioavailable copper content and ARGs/MGEs, further suggesting that the heavy metal Cu(II) in biogas slurries and residues contributes to the abundance of ARGs/MGEs in the soil to some extent. Unfortunately, significant changes in bacterial community composition in the simulated soil due to the application of biochar were not observed in the next-generation sequencing analysis. However, based on the above results, it can be concluded that biochar, specially modified biochar, may reduce antibiotic resistance in the soil after the application of biogas slurries and residues as fertilizer through different mechanisms.
關鍵字(中) ★ 生物炭
★ 沼液沼渣
★ 抗生素抗性基因
★ 土壤縮模試驗
關鍵字(英) ★ biochar
★ biogas slurries and residues
★ antibiotic resistance gene
★ soil microcosm
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vi
圖目錄 ix
表目錄 xi
第一章 研究緣起與目的 1
1.1 研究緣起 1
1.1.1 抗生素與抗生素抗藥性 1
1.1.2 畜牧業與抗生素抗藥性之關聯 1
1.1.3 禽畜糞再製成肥料對土壤中ARGs豐度影響 3
1.1.4 生物炭 4
1.1.5 生物炭減輕環境中抗生素抗藥性 4
1.1.6 改質生物炭對重金屬生物有效性及抗生素抗藥性之影響 5
1.2 研究目的 6
第二章 材料與方法 7
2.1 研究流程與步驟 7
2.2 常規與錳改質生物炭合成方法 8
2.3 生物炭特性分析方法 8
2.3.1 pH 8
2.3.2 元素分析 9
2.3.3 比表面積與孔徑分布分析 9
2.3.4 掃描式電子顯微鏡-X射線能譜儀分析 9
2.3.5 傅立葉轉換紅外線光譜儀分析 9
2.3.6 X 射線粉末繞射儀分析 10
2.4 水相吸附實驗 10
2.4.1 動力學吸附實驗及分析 10
2.4.2 等溫吸附實驗 11
2.5 土壤縮模試驗架設 12
2.5.1 沼液沼渣樣品採集與保存 12
2.5.2 試驗土壤樣品採集與保存 12
2.5.4 縮模試驗架設流程 12
2.6 沼液沼渣及土壤之物化分析 13
2.6.1 沼液沼渣重金屬分析 13
2.6.2 土壤pH 13
2.6.3 土壤含水量 14
2.6.4 土壤重金屬總量分析─微波消化法 14
2.6.5 土壤重金屬分析─序列萃取法 14
2.6.6 土壤總有機碳、總有機氮分析─燃燒法 16
2.7 分子生物實驗 16
2.7.1 DNA提取 16
2.7.2 目標基因定量─qPCR分析 16
2.8 分子生物研究數據與統計分析 21
2.8.1 qPCR數據處理 21
2.8.2 縮模試驗ARGs顯著性分析 21
2.8.3 熱點圖分析(heatmap) 22
2.8.4 Spearman等級相關係數分析 22
2.8.5 目標基因衰減係數 22
2.8.6 冗餘分析(Redundancy analysis, RDA) 23
2.8.7 細菌群落分析 23
2.8.8 網絡分析 (Network analysis) 23
2.9 研究儀器設備及試劑 24
第三章 結果與討論 26
3.1 生物炭基本特性分析 26
3.2 生物炭吸附重金屬鋅之吸附機制探討 34
3.2.1 動力學吸附 34
3.2.2 等溫吸附研究 36
3.3 沼液沼渣土壤縮模試驗 38
3.3.1 試驗土壤基本特性 38
3.3.2 縮模試驗土壤樣品之環境參數分析 38
3.3.3 縮模試驗土壤樣品ARGs/MGE豐度概況 43
3.3.4 縮模試驗各實驗組於不同時間之目標基因豐度 44
3.3.5 目標基因豐度削減程度 53
3.3.6 環境參數與目標基因spearman相關及冗餘分析 55
3.3.7 菌種分析結果 66
3.3.8 網絡分析 71
3.4 環境意義 72
第四章 結論與建議 74
4.1 結論 74
4.2 建議 75
參考文獻 76
附錄 88
參考文獻 Allen, H. K., Donato, J., Wang, H. H., Cloud-Hansen, K. A., Davies, J., & Handelsman, J. (2010). Call of the wild: antibiotic resistance genes in natural environments. Nature Reviews. Microbiology, 8(4), 251–259.
Arthurson, V. (2009). Closing the Global Energy and Nutrient Cycles through Application of Biogas Residue to Agricultural Land – Potential Benefits and Drawback. Energies, 2(2), 226-242. https://doi.org/10.3390/en20200226
Baker-Austin, C., Wright, M. S., Stepanauskas, R., & McArthur, J. V. (2006). Co-selection of antibiotic and metal resistance. Trends in Microbiology, 14(4), 176–182.
Barłóg, P., Hlisnikovský, L., & Kunzová, E. (2020). Effect of Digestate on Soil Organic Carbon and Plant-Available Nutrient Content Compared to Cattle Slurry and Mineral Fertilization. Agronomy, 10(3). https://doi.org/10.3390/agronomy10030379
Bennett, P. M. (2008). Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br J Pharmacol, 153 Suppl1(Suppl 1), S347-357.https://doi.org/10.1038/sj.bjp.0707607
Bush, K. (2013). Proliferation and significance of clinically relevant β-lactamases. Annals of the New York Academy of Sciences, 1277, 84–90. Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An Open Source Software for Exploring and Manipulating Networks. Proceedings of the International AAAI Conference on Web and Social Media, 3(1), 361-362. https://doi.org/10.1609/icwsm.v3i1.13937
Cao, J., Yang, G., Mai, Q., Zhuang, Z., & Zhuang, L. (2020). Co-selection of antibiotic-resistant bacteria in a paddy soil exposed to As(III) contamination with an emphasis on potential pathogens. Science of The Total Environment (Vol. 725, p.138367).https://doi.org/10.1016/j.scitotenv.2020.138367
Cha, J. S., Park, S. H., Jung, S. C., Ryu, C., Jeon, J. K., Shin, M. C., & Park, Y. K. (2016). Production and utilization of biochar: A review. Journal of Industrial and Engineering Chemistry, 40, 1-15.
Chanda, S., & Rakholiya, K. (2011). Combination therapy: Synergism between natural plant extracts and antibiotics against infectious diseases. Science against Microbial Pathogens: Communicating Current Research and Technological Advances.
Chen, B., Yuan, K., Chen, X., Yang, Y., Zhang, T., Wang, Y., Luan, T., Zou, S., & Li, X. (2016). Metagenomic Analysis Revealing Antibiotic Resistance Genes (ARGs) and Their Genetic Compartments in the Tibetan Environment. Environmental Science & Technology, 50(13), 6670–6679.
Chen, Q.-L., Fan, X.-T., Zhu, D., An, X.-L., Su, J.-Q., & Cui, L. (2018). Effect of biochar amendment on the alleviation of antibiotic resistance in soil and phyllosphere of Brassica chinensis L. In Soil Biology and Biochemistry (Vol. 119, pp. 74–82). https://doi.org/10.1016/j.soilbio.2018.01.015
Chen, Z., Shen, J., Xu, X., Feng, H., & Wang, M. (2023). Adsorption of antibiotic, heavy metal and antibiotic plasmid by a wet-state silicon-rich biochar/ferrihydrite composite to inhibit antibiotic resistance gene proliferation/transformation. Chemosphere, 324, 138356. https://doi.org/10.1016/j.chemosphere.2023.138356
Claoston, N., Samsuri, A. W., Husni, M. H. A., & Amran, M. S. M. (2014). Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars. In Waste Management & Research: The Journal for a Sustainable Circular Economy (Vol. 32, Issue 4, pp. 331–339). https://doi.org/10.1177/0734242x14525822
Cui, E.-P., Gao, F., Liu, Y., Fan, X.-Y., Li, Z.-Y., Du, Z.-J., Hu, C., & Neal, A. L. (2018). Amendment soil with biochar to control antibiotic resistance genes under unconventional water resources irrigation: Proceed with caution. Environmental Pollution , 240, 475–484.
Cui, E., Wu, Y., Zuo, Y., & Chen, H. (2016). Effect of different biochars on antibiotic resistance genes and bacterial community during chicken manure composting. In 33 Bioresource Technology (Vol. 203, pp. 11–17). https://doi.org/10.1016/j.biortech.2015.12.030
Daful, A. G., & Chandraratne, M. R. (2020). Biochar Production From Biomass Waste-Derived Material. Encyclopedia of Renewable and Sustainable Materials (pp. 370–378).
https://doi.org/10.1016/b978-0-12-803581-8.11249-4
D’Costa, V. M., King, C. E., Kalan, L., Morar, M., Sung, W. W. L., Schwarz, C., Froese, D., Zazula, G., Calmels, F., Debruyne, R., Golding, G. B., Poinar, H. N., & Wright, G. D. (2011). Antibiotic resistance is ancient. Nature, 477(7365), 457–461.
Deng, W., Zhang, A., Chen, S., He, X., Jin, L., Yu, X., Yang, S., Li, B., Fan, L., Ji, L., Pan, X., & Zou, L. (2020). Heavy metals, antibiotics and nutrients affect the bacterial community and resistance genes in chicken manure composting and fertilized soil. Journal of Environmental Management, 257, 109980.
https://doi.org/https://doi.org/10.1016/j.jenvman.2019.109980
Ding, J., Yin, Y., Sun, A.-Q., Lassen, S. B., Li, G., Zhu, D., & Ke, X. (2019). Effects of biochar amendments on antibiotic resistome of the soil and collembolan gut. Journal of Hazardous Materials, 377, 186–194.
Ding, W., Dong, X., Ime, I. M., Gao, B., & Ma, L. Q. (2014). Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars. Chemosphere, 105, 68-74.
https://doi.org/10.1016/j.chemosphere.2013.12.042
Donohue, M. D., & Aranovich, G. L. (1998). Classification of Gibbs adsorption isotherms. Advances in Colloid and Interface Science, 76-77, 137-152.
https://doi.org/https://doi.org/10.1016/S0001-8686(98)00044-X
Duan, M., Li, H., Gu, J., Tuo, X., Sun, W., Qian, X., & Wang, X. (2017). Effects of biochar on reducing the abundance of oxytetracycline, antibiotic resistance genes, and human pathogenic bacteria in soil and lettuce. Environmental Pollution , 224, 787–795.
Fluit, A. C., & Schmitz, F. J. (1999). Class 1 Integrons, Gene Cassettes, Mobility, and Epidemiology. European Journal of Clinical Microbiology and Infectious Diseases, 18(11), 761-770. https://doi.org/10.1007/s100960050398
Gao, P., He, S., Huang, S., Li, K., Liu, Z., Xue, G., & Sun, W. (2015). Impacts of coexisting antibiotics, antibacterial residues, and heavy metals on the occurrence of erythromycin resistance genes in urban wastewater. Applied Microbiology and Biotechnology, 99(9), 3971–3980.
Garneau-Tsodikova, S., & Labby, K. J. (2016). Mechanisms of Resistance to Aminoglycoside Antibiotics: Overview and Perspectives. MedChemComm, 7(1), 11–27.
Gholami, L., & Rahimi, G. (2021). Chemical fractionation of copper and zinc after addition of carrot pulp biochar and thiourea-modified biochar to a contaminated soil. Environ Technol, 42(22), 3523-3532. https://doi.org/10.1080/09593330.2020.1733101
Gillings, M. R., Gaze, W. H., Pruden, A., Smalla, K., Tiedje, J. M., & Zhu, Y.-G. (2015). Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. The ISME Journal, 9(6), 1269–1279.
Harris, D., Horwáth, W. R., & van Kessel, C. (2001). Acid fumigation of soils to remove carbonates prior to total organic carbon or CARBON-13 isotopic analysis. Soil Science Society of America Journal, 65(6), 1853-1856. https://doi.org/10.2136/sssaj2001.1853
He, Y., Yin, X., Li, F., Wu, B., Zhu, L., Ge, D., Wang, N., Chen, A., Zhang, L., Yan, B., Huang, H., Luo, L., Wu, G., & Zhang, J. (2023). Response characteristics of antibiotic resistance genes and bacterial communities during agricultural waste composting: Focusing on biogas residue combined with biochar amendments. Bioresource Technology, 372, 128636. https://doi.org/10.1016/j.biortech.2023.128636
Huang, L., Xu, Y., Xu, J., Ling, J., Zheng, L., Zhou, X., & Xie, G. (2019). Dissemination of antibiotic resistance genes (ARGs) by rainfall on a cyclic economic breeding livestock farm. In International Biodeterioration & Biodegradation (Vol. 138, pp. 114–121). https://doi.org/10.1016/j.ibiod.2019.01.009
Huang, H., Reddy, N. G., Huang, X., Chen, P., Wang, P., Zhang, Y., Huang, Y., Lin, P., & Garg, A. (2021). Effects of pyrolysis temperature, feedstock type and compaction on water retention of biochar amended soil. Sci Rep, 11(1), 7419. https://doi.org/10.1038/s41598-021-86701-5
Hurst, J. J., Oliver, J. P., Schueler, J., Gooch, C., Lansing, S., Crossette, E., Wigginton, K., Raskin, L., Aga, D. S., & Sassoubre, L. M. (2019). Trends in Antimicrobial Resistance Genes in Manure Blend Pits and Long-Term Storage Across Dairy Farms with Comparisons to Antimicrobial Usage and Residual Concentrations. Environmental Science & Technology, 53(5), 2405–2415.
Inyang, M., & Dickenson, E. (2015). The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: A review. Chemosphere (Vol. 134, pp. 232–240). https://doi.org/10.1016/j.chemosphere.2015.03.072
Jauregi, L., Gonzalez, A., Garbisu, C., & Epelde, L. (2023). Organic amendment treatments for antimicrobial resistance and mobile element genes risk reduction in soil-crop systems. Sci Rep, 13(1), 863. https://doi.org/10.1038/s41598-023-27840-9
Jayakumar, A., Wurzer, C., Soldatou, S., Edwards, C., Lawton, L. A., & Mašek, O. (2021). New directions and challenges in engineering biologically-enhanced biochar for biological water treatment. The Science of the Total Environment, 796, 148977.
Karkman, A., Pärnänen, K., & Larsson, D. G. J. (2019). Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Nature Communications, 10(1), 80.
Keiluweit, M., Nico, P. S., Johnson, M. G., & Kleber, M. (2010). Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar). Environmental Science & Technology, 44(4), 1247-1253. https://doi.org/10.1021/es9031419
Knapp, C. W., Callan, A. C., Aitken, B., Shearn, R., Koenders, A., & Hinwood, A. (2017). Relationship between antibiotic resistance genes and metals in residential soil samples from Western Australia. Environmental Science and Pollution Research International, 24(3), 2484–2494.
Knapp, C. W., Dolfing, J., Ehlert, P. A. I., & Graham, D. W. (2010). Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environmental Science & Technology, 44(2), 580–587.
Kui, H., Jingyang, C., Mengxin, G., Hui, X., & Li, L. (2020). Effects of biochars on the fate of antibiotics and their resistance genes during vermicomposting of dewatered sludge. Journal of Hazardous Materials, 397, 122767.
Lian, F., Yu, W., Zhou, Q., Gu, S., Wang, Z., & Xing, B. (2020). Size Matters: Nano-Biochar Triggers Decomposition and Transformation Inhibition of Antibiotic Resistance Genes in Aqueous Environments. Environmental Science & Technology, 54(14), 8821–8829.
Liang, J., Li, X., Yu, Z., Zeng, G., Luo, Y., Jiang, L., Yang, Z., Qian, Y., & Wu, H. (2017). Amorphous MnO2 Modified Biochar Derived from Aerobically Composted Swine Manure for Adsorption of Pb(II) and Cd(II). ACS Sustainable Chemistry & Engineering, 5(6), 5049-5058. https://doi.org/10.1021/acssuschemeng.7b00434
Li, H., Dong, X., da Silva, E. B., de Oliveira, L. M., Chen, Y., & Ma, L. Q. (2017). Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere, 178, 466-478. https://doi.org/10.1016/j.chemosphere.2017.03.072
Li, H., Duan, M., Gu, J., Zhang, Y., Qian, X., Ma, J., Zhang, R., & Wang, X. (2017). Effects of bamboo charcoal on antibiotic resistance genes during chicken manure composting. Ecotoxicology and Environmental Safety, 140, 1–6.
Li, H., Wang, X., Tan, L., Li, Q., Zhang, C., Wei, X., Wang, Q., Zheng, X., & Xu, Y. (2022). Coconut shell and its biochar as fertilizer amendment applied with organic fertilizer: Efficacy and course of actions on eliminating antibiotic resistance genes in agricultural soil. J Hazard Mater, 437, 129322. https://doi.org/10.1016/j.jhazmat.2022.129322
Li, J., Fan, J., Zhang, J., Hu, Z., & Liang, S. (2018). Preparation and evaluation of wetland plant-based biochar for nitrogen removal enhancement in surface flow constructed wetlands. Environmental Science and Pollution Research International, 25(14), 13929–13937.
Liu, B., Cai, Z., Zhang, Y., Liu, G., Luo, X., & Zheng, H. (2019). Comparison of efficacies of peanut shell biochar and biochar-based compost on two leafy vegetable productivity in an infertile land. In Chemosphere (Vol. 224, pp. 151–161).
https://doi.org/10.1016/j.chemosphere.2019.02.100
Li, X.-Z., & Nikaido, H. (2009). Efflux-mediated drug resistance in bacteria: an update. Drugs, 69(12), 1555–1623.
Li, Y., Wang, X., Li, J., Wang, Y., Song, J., Xia, S., Jing, H., & Zhao, J. (2019). Effects of struvite-humic acid loaded biochar/bentonite composite amendment on Zn(II) and antibiotic resistance genes in manure-soil. Chemical Engineering Journal, 375. https://doi.org/10.1016/j.cej.2019.122013
Li, Y., Wang, X., Wang, Y., Wang, F., Xia, S., & Zhao, J. (2020). Struvite-supported biochar composite effectively lowers Cu bio-availability and the abundance of antibiotic-resistance genes in soil. Sci Total Environ, 724, 138294. https://doi.org/10.1016/j.scitotenv.2020.138294
Lu, H. P., Li, Z. A., Gasco, G., Mendez, A., Shen, Y., & Paz-Ferreiro, J. (2018). Use of magnetic biochars for the immobilization of heavy metals in a multi-contaminated soil. Sci Total Environ, 622-623, 892-899. https://doi.org/10.1016/j.scitotenv.2017.12.056
Luo, C., Lü, F., Shao, L., & He, P. (2015). Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes. Water Research, 68, 710–718.
Ma, L., Li, A.-D., Yin, X.-L., & Zhang, T. (2017). The Prevalence of Integrons as the Carrier of Antibiotic Resistance Genes in Natural and Man-Made Environments. Environmental Science & Technology, 51(10), 5721–5728.
Maneechakr, P., & Karnjanakom, S. (2019). Environmental surface chemistries and adsorption behaviors of metal cations (Fe3 , Fe2 , Ca2 and Zn2 ) on manganese dioxide-modified green biochar. RSC Advances (Vol. 9, Issue 42, pp. 24074–24086).
https://doi.org/10.1039/c9ra03112j
Martinez, J. L. (2008). Antibiotics and Antibiotic Resistance Genes in Natural Environments. Science (Vol. 321, Issue 5887, pp. 365–367). https://doi.org/10.1126/science.1159483
McKenzie, G. J., Harris, R. S., Lee, P. L., & Rosenberg, S. M. (2000). The SOS response regulates adaptive mutation. Proceedings of the National Academy of Sciences of the United States of America, 97(12), 6646–6651.
Medha, I., Chandra, S., Vanapalli, K. R., Samal, B., Bhattacharya, J., & Das, B. K. (2021). (3-Aminopropyl)triethoxysilane and iron rice straw biochar composites for the sorption of Cr (VI) and Zn (II) using the extract of heavy metals contaminated soil. The Science of the Total Environment, 771, 144764.
Min Jang, H., Choi, S., Shin, J., Kan, E., & Mo Kim, Y. (2019). Additional reduction of antibiotic resistance genes and human bacterial pathogens via thermophilic aerobic digestion of anaerobically digested sludge. Bioresour Technol, 273, 259-268. https://doi.org/10.1016/j.biortech.2018.11.027
Mukherjee, A., Zimmerman, A. R., & Harris, W. (2011). Surface chemistry variations among a series of laboratory-produced biochars. In Geoderma (Vol. 163, Issues 3-4, pp. 247–255).https://doi.org/10.1016/j.geoderma.2011.04.021
Ouyang, W., Gao, B., Cheng, H., Zhang, L., Wang, Y., Lin, C., & Chen, J. (2020). Airborne bacterial communities and antibiotic resistance gene dynamics in PM2.5 during rainfall. In Environment International (Vol. 134, p. 105318).
https://doi.org/10.1016/j.envint.2019.105318
Pueyo, M., Rauret, G., Luck, D., Yli-Halla, M., Muntau, H., Quevauviller, P., & Lopez-Sanchez, J. F. (2001). Certification of the extractable contents of Cd, Cr, Cu, Ni, Pb and Zn in a freshwater sediment following a collaboratively tested and optimised three-step sequential extraction procedure. J Environ Monit, 3(2), 243-250.https://doi.org/10.1039/b010235k
Qian, X., Gu, J., Sun, W., Wang, X.-J., Su, J.-Q., & Stedfeld, R. (2018). Diversity, abundance, and persistence of antibiotic resistance genes in various types of animal manure following industrial composting. Journal of Hazardous Materials, 344, 716–722.
Review on Antimicrobial Resistance. (2014). Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations.
de los Santos, E., Laviña, M., & Poey, M. E. (2021). Strict relationship between class 1 integrons and resistance to sulfamethoxazole in Escherichia coli. Microbial Pathogenesis, 161, 105206. https://doi.org/10.1016/j.micpath.2021.105206
Sarmah, A. K., Meyer, M. T., & Boxall, A. B. A. (2006). A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 65(5), 725–759.
Seiler, C., & Berendonk, T. U. (2012). Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Frontiers in Microbiology, 3, 399.
Selvam, A., Xu, D., Zhao, Z., & Wong, J. W. C. (2012). Fate of tetracycline, sulfonamide and fluoroquinolone resistance genes and the changes in bacterial diversity during composting of swine manure. Bioresource Technology, 126, 383–390.
Shaw, J. L. A., Ernakovich, J. G., Judy, J. D., Farrell, M., Whatmuff, M., & Kirby, J. (2020). Long-term effects of copper exposure to agricultural soil function and microbial community structure at a controlled and experimental field site. Environ Pollut, 263(Pt A), 114411. https://doi.org/10.1016/j.envpol.2020.114411
Shinogi, Y., & Kanri, Y. (2003). Pyrolysis of plant, animal and human waste: physical and chemical characterization of the pyrolytic products. Bioresource Technology, 90(3), 241-247. https://doi.org/https://doi.org/10.1016/S0960-8524(03)00147-0
Song, J., Rensing, C., Holm, P. E., Virta, M., & Brandt, K. K. (2017). Comparison of Metals and Tetracycline as Selective Agents for Development of Tetracycline Resistant Bacterial Communities in Agricultural Soil. Environmental Science & Technology, 51(5), 3040–3047.
Stepanauskas, R., Glenn, T. C., Jagoe, C. H., Tuckfield, R. C., Lindell, A. H., King, C. J., & McArthur, J. V. (2006). Coselection for microbial resistance to metals and antibiotics in freshwater microcosms. Environmental Microbiology, 8(9), 1510–1514.
Subbiah, M., Top, E. M., Shah, D. H., & Call, D. R. (2011). Selection pressure required for long-term persistence of blaCMY-2-positive IncA/C plasmids. Appl Environ Microbiol, 77(13), 4486-4493. https://doi.org/10.1128/AEM.02788-10
Sun, W., Qian, X., Gu, J., Wang, X.-J., & Duan, M.-L. (2016). Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure. Scientific Reports, 6(1), 30237. https://doi.org/10.1038/srep30237
Tan, X., Wei, W., Xu, C., Meng, Y., Bai, W., Yang, W., & Lin, A. (2020). Manganese-modified biochar for highly efficient sorption of cadmium. Environ Sci Pollut Res Int, 27(9), 9126-9134. https://doi.org/10.1007/s11356-019-07059-w
Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. In Reviews in Environmental Science and Bio/Technology (Vol. 19, Issue 1, pp. 191–215). https://doi.org/10.1007/s11157-020-09523-3
Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), 1051-1069. https://doi.org/doi:10.1515/pac-2014-1117
Van Boeckel, T. P., Pires, J., Silvester, R., Zhao, C., Song, J., Criscuolo, N. G., Gilbert, M., Bonhoeffer, S., & Laxminarayan, R. (2019). Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science, 365(6459). https://doi.org/10.1126/science.aaw1944
Ventola, C. L. (2015). The antibiotic resistance crisis: part 1: causes and threats. P & T: A Peer-Reviewed Journal for Formulary Management, 40(4), 277–283.
Vikesland, P. J., Pruden, A., Alvarez, P. J. J., Aga, D., Bürgmann, H., Li, X.-D., Manaia, C. M., Nambi, I., Wigginton, K., Zhang, T., & Zhu, Y.-G. (2017). Toward a Comprehensive Strategy to Mitigate Dissemination of Environmental Sources of Antibiotic Resistance. In Environmental Science & Technology (Vol. 51, Issue 22, pp. 13061–13069). https://doi.org/10.1021/acs.est.7b03623
Wales, A. D., & Davies, R. H. (2015). Co-Selection of Resistance to Antibiotics, Biocides and Heavy Metals, and Its Relevance to Foodborne Pathogens. Antibiotics (Basel, Switzerland), 4(4), 567–604.
Wang, B., Lan, J., Bo, C., Gong, B., & Ou, J. (2023). Adsorption of heavy metal onto biomass-derived activated carbon: review. RSC Adv, 13(7), 4275-4302.
https://doi.org/10.1039/d2ra07911a
Wang, G., Kong, Y., Yang, Y., Ma, R., Li, L., Li, G., & Yuan, J. (2022). Composting temperature directly affects the removal of antibiotic resistance genes and mobile genetic elements in livestock manure. Environmental Pollution, 303, 119174.
https://doi.org/https://doi.org/10.1016/j.envpol.2022.119174
Wang, J., Wang, L., Zhu, L., Wang, J., & Xing, B. (2020). Antibiotic resistance in agricultural soils: Source, fate, mechanism and attenuation strategy. In Critical Reviews in Environmental Science and Technology (pp. 1–43). https://doi.org/10.1080/10643389.2020.1835438
Walthert, L., Graf, U., Kammer, A., Luster, J., Pezzotta, D., Zimmermann, S., & Hagedorn, F. (2010). Determination of organic and inorganic carbon, δ 13 C, and nitrogen in soils containing carbonates after acid fumigation with HCl. Journal of Plant Nutrition and Soil Science, 173(2), 207-216. https://doi.org/10.1002/jpln.200900158
Wang, Z., Liu, G., Zheng, H., Li, F., Ngo, H. H., Guo, W., Liu, C., Chen, L., & Xing, B. (2015). Investigating the mechanisms of biochar’s removal of lead from solution. Bioresource Technology, 177, 308–317.
Wojewódzki, P., Lemanowicz, J., Debska, B., Haddad, S. A., & Tobiasova, E. (2022). The Application of Biochar from Waste Biomass to Improve Soil Fertility and Soil Enzyme Activity and Increase Carbon Sequestration. Energies, 16(1).
https://doi.org/10.3390/en16010380
Woolhouse, M. E. J., & Ward, M. J. (2013). Sources of Antimicrobial Resistance. Science, 341(6153), 1460–1461.
Wright, G. D. (2011). Molecular mechanisms of antibiotic resistance. In Chemical Communications (Vol. 47, Issue 14, p. 4055). https://doi.org/10.1039/c0cc05111j
Wright, G. D., & Poinar, H. (2012). Antibiotic resistance is ancient: implications for drug discovery. Trends in Microbiology, 20(4), 157–159.
Xiao, X., Chen, B., Chen, Z., Zhu, L., & Schnoor, J. L. (2018). Insight into Multiple and Multilevel Structures of Biochars and Their Potential Environmental Applications: A Critical Review. Environmental Science & Technology, 52(9), 5027–5047.
Xie, S., Wu, N., Tian, J., Liu, X., Wu, S., Mo, Q., & Lu, S. (2019). Review on the removal of antibiotic resistance genes from livestock manure by composting. IOP Conference Series: Earth and Environmental Science, 237(5), 052010. https://doi.org/10.1088/1755-1315/237/5/052010
Xu, Y., Xu, J., Mao, D., & Luo, Y. (2017). Effect of the selective pressure of sub-lethal level of heavy metals on the fate and distribution of ARGs in the catchment scale. Environmental Pollution , 220(Pt B), 900–908.
Ye, M., Sun, M., Feng, Y., Wan, J., Xie, S., Tian, D., Zhao, Y., Wu, J., Hu, F., Li, H., & Jiang, X. (2016). Effect of biochar amendment on the control of soil sulfonamides, antibiotic-resistant bacteria, and gene enrichment in lettuce tissues. Journal of Hazardous Materials, 309, 219–227.
Youngquist, C. P., Mitchell, S. M., & Cogger, C. G. (2016). Fate of Antibiotics and Antibiotic Resistance during Digestion and Composting: A Review. Journal of Environmental Quality, 45(2), 537-545. https://doi.org/https://doi.org/10.2134/jeq2015.05.0256
Yu, M., & Zhao, Y. (2019). Comparative resistomic analyses of Lysobacter species with high intrinsic multidrug resistance. Journal of Global Antimicrobial Resistance, 19, 320-327. https://doi.org/https://doi.org/10.1016/j.jgar.2019.05.008
Yue, Z., Zhang, J., Zhou, Z., Ding, C., Zhang, T., Wan, L., & Wang, X. (2022). Antibiotic degradation dominates the removal of antibiotic resistance genes during composting. Bioresource Technology, 344, 126229.
https://doi.org/https://doi.org/10.1016/j.biortech.2021.126229
Zammit, I., Marano, R. B. M., Vaiano, V., Cytryn, E., & Rizzo, L. (2020). Changes in Antibiotic Resistance Gene Levels in Soil after Irrigation with Treated Wastewater: A Comparison between Heterogeneous Photocatalysis and Chlorination. Environmental Science & Technology, 54(12), 7677–7686.
Zhang, H., Feng, X., Larssen, T., Shang, L., & Li, P. (2010). Bioaccumulation of Methylmercury versus Inorganic Mercury in Rice (Oryza sativa L.) Grain. Environmental Science & Technology, 44(12), 4499-4504.
https://doi.org/10.1021/es903565t
Zhang, W., Sturm, B. S. M., Knapp, C. W., & Graham, D. W. (2009). Accumulation of Tetracycline Resistance Genes in Aquatic Biofilms Due to Periodic Waste Loadings from Swine Lagoons. Environmental Science & Technology, 43(20), 7643-7650.
https://doi.org/10.1021/es9014508
Zhao, Y., Wang, X., Yao, G., Lin, Z., Xu, L., Jiang, Y., Jin, Z., Shan, S., & Ping, L. (2022). Advances in the Effects of Biochar on Microbial Ecological Function in Soil and Crop Quality. Sustainability, 14(16). https://doi.org/10.3390/su141610411
Zheng, H., Wang, X., Chen, L., Wang, Z., Xia, Y., Zhang, Y., Wang, H., Luo, X., & Xing, B. (2018). Enhanced growth of halophyte plants in biochar-amended coastal soil: roles of nutrient availability and rhizosphere microbial modulation. Plant, Cell & Environment, 41(3), 517–532.
Zheng, H., Wang, Z., Deng, X., Zhao, J., Luo, Y., Novak, J., Herbert, S., & Xing, B. (2013). Characteristics and nutrient values of biochars produced from giant reed at different temperatures. In Bioresource Technology (Vol. 130, pp. 463–471).
https://doi.org/10.1016/j.biortech.2012.12.044
Zheng, X., Fan, J., Xu, L., & Zhou, J. (2017). Effects of Combined Application of Biogas Slurry and Chemical Fertilizer on Soil Aggregation and C/N Distribution in an Ultisol. PLoS One, 12(1), e0170491. https://doi.org/10.1371/journal.pone.0170491
Zhou, D., Liu, D., Gao, F., Li, M., & Luo, X. (2017). Effects of Biochar-Derived Sewage Sludge on Heavy Metal Adsorption and Immobilization in Soils. Int J Environ Res Public Health, 14(7). https://doi.org/10.3390/ijerph14070681
Zhu, G., Wang, X., Yang, T., Su, J., Qin, Y., Wang, S., Gillings, M., Wang, C., Ju, F., Lan, B., Liu, C., Li, H., Long, X.-E., Wang, X., Jetten, M. S. M., Wang, Z., & Zhu, Y.-G. (2021). Air pollution could drive global dissemination of antibiotic resistance genes. The ISME Journal, 15(1), 270–281.
Zhu, Y.-G., Johnson, T. A., Su, J.-Q., Qiao, M., Guo, G.-X., Stedtfeld, R. D., Hashsham, S. A., & Tiedje, J. M. (2013). Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proceedings of the National Academy of Sciences of the United States of America, 110(9), 3435–3440.
Zhu, Y.-G., Zhao, Y., Li, B., Huang, C.-L., Zhang, S.-Y., Yu, S., Chen, Y.-S., Zhang, T., Gillings, M. R., & Su, J.-Q. (2017). Continental-scale pollution of estuaries with antibiotic resistance genes. Nature Microbiology, 2, 16270.
鄧教毅,「重金屬生物有效性對於抗生素抗性基因在農地土壤的分佈與持續之影響」,國立中央大學碩士論文,2018。
張智聖,「抗生素抗性菌與抗性基因在污水處理程序中的動態變化」,國立中央大學碩士論文,2019。
陳垣維,「利用生物炭現地復育受多重重金屬污染之水稻田土壤」,國立中央大學碩士論文,2021。
鄭念媛,「不同料源製成之市售堆肥其抗生素抗性基因含量調查」,國立中央大學碩士論文,2022。
林子晞,「沼液沼渣的施用促成農地土壤抗生素抗性基因增殖的可能性探討」,國立中央大學碩士論文,2023
指導教授 林居慶(Chu-Ching Lin) 審核日期 2023-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明