參考文獻 |
Aakre, I., Bøkevoll, A., Chaira, J., Bouthir, F. Z., Frantzen, S., Kausland, A., & Kjellevold, M. (2020). Variation in nutrient composition of seafood from North West Africa: Implications for food and nutrition security. Foods, 9(10), 1516.
Alonso-Pippo, W., Luengo, C. A., Felfli, F. F., Garzone, P., & Cornacchia, G. (2009). Energy recovery from sugarcane biomass residues: Challenges and opportunities of bio-oil production in the light of second generation biofuels. Journal of renewable and sustainable energy, 1(6), 063102.
Amin, S. (2008). Characterization of heat cured and transglutaminase cross-linked whey protein-based edible films. Michigan State University.
Aubourg, S. P., Lehmann, I., & Gallardo, J. M. (2002). Effect of previous chilled storage on rancidity development in frozen horse mackerel (Trachurus trachurus). Journal of the Science of Food and Agriculture, 82(15), 1764-1771.
Bückle-Vallant, V., Krause, F. S., Messerschmidt, S., & Eikmanns, B. J. (2014). Metabolic engineering of Corynebacterium glutamicum for 2-ketoisocaproate production. Applied microbiology and biotechnology, 98(1), 297-311.
Ben Rebah, F., & Miled, N. (2013). Fish processing wastes for microbial enzyme production: a review. 3 Biotech, 3(4), 255-265.
Bhardwaj, N., Kumar, B., & Verma, P. (2019). A detailed overview of xylanases: an emerging biomolecule for current and future prospective. Bioresources and Bioprocessing, 6(1), 1-36.
Bizzo, W. A., Lenço, P. C., Carvalho, D. J., & Veiga, J. P. S. (2014). The generation of residual biomass during the production of bio-ethanol from sugarcane, its characterization and its use in energy production. Renewable and Sustainable Energy Reviews, 29, 589-603.
Bottcher, A., Cesarino, I., Brombini dos Santos, A., Vicentini, R., Mayer, J. L. S., Vanholme, R., Morreel, K., Goeminne, G., Moura, J. C. M. S., & Nobile, P. M. (2013). Lignification in sugarcane: biochemical characterization, gene discovery, and expression analysis in two genotypes contrasting for lignin content. Plant physiology, 163(4), 1539-1557.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254.
Bryan, P. N. (2000). Protein engineering of subtilisin. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1543(2), 203-222.
Charline, L., Jeremy, V., Patrick, R., Armando, C.-P., & Kévin, C. (2021). Emulation of field storage conditions for assessment of energy properties of torrefied sugarcane bagasses. Biomass and Bioenergy, 145, 105938.
Chen, W. H., Tu, Y. J., & Sheen, H. K. (2010). Impact of dilute acid pretreatment on the structure of bagasse for bioethanol production. International Journal of Energy Research, 34(3), 265-274.
Chi, C., Chang, H.-m., Li, Z., Jameel, H., & Zhang, Z. (2013). A method for rapid determination of sugars in lignocellulose prehydrolyzate. BioResources, 8(1), 172-181.
Church, F. C., Porter, D. H., Catignani, G. L., & Swaisgood, H. E. (1985). An o-phthalaldehyde spectrophotometric assay for proteinases. Analytical biochemistry, 146(2), 343-348.
Dashdorj, D., & Hwang, I.-H. (2012). Effect of extraction methods on the types and levels of free amino acid of beef longissimus muscle. Food Science of Animal Resources, 32(3), 369-375.
Ellouz, Y., Bayoudh, A., Kammoun, S., Gharsallah, N., & Nasri, M. (2001). Production of protease by Bacillus subtilis grown on sardinelle heads and viscera flour. Bioresource Technology, 80(1), 49-51.
Ernst, O., & Zor, T. (2010). Linearization of the Bradford protein assay. JoVE (Journal of Visualized Experiments)(38), e1918.
Escobar, J., Frank, J. W., Suryawan, A., Nguyen, H. V., Van Horn, C. G., Hutson, S. M., & Davis, T. A. (2010). Leucine and α-ketoisocaproic acid, but not norleucine, stimulate skeletal muscle protein synthesis in neonatal pigs. The Journal of nutrition, 140(8), 1418-1424.
Flores, A. A., Falokun, O. S., Ilesanmi, A. B., Arredondo, A. V., Truong, L., Fuentes, N., Spezia, R., & Angel, L. A. (2021). Formation of Co (II), Ni (II), Zn (II) complexes of alternative metal binding heptapeptides and nitrilotriacetic acid: Discovering new potential affinity tags. International Journal of Mass Spectrometry, 463, 116554.
Gao, R., Yu, Q., Shen, Y., Chu, Q., Chen, G., Fen, S., Yang, M., Yuan, L., McClements, D. J., & Sun, Q. (2021). Production, bioactive properties, and potential applications of fish protein hydrolysates: Developments and challenges. Trends in Food Science & Technology, 110, 687-699.
Gatnau, R., Zimmerman, D., Nissen, S., Wannemuehler, M., & Ewan, R. (1995). Effects of excess dietary leucine and leucine catabolites on growth and immune responses in weanling pigs. Journal of Animal Science, 73(1), 159-165.
Hayes, M., & Gallagher, M. (2019). Processing and recovery of valuable components from pelagic blood-water waste streams: A review and recommendations. Journal of Cleaner Production, 215, 410-422.
He, S., Franco, C., & Zhang, W. (2013). Functions, applications and production of protein hydrolysates from fish processing co-products (FPCP). Food Research International, 50(1), 289-297.
Herpandi, N. H., Rosma, A., & Wan Nadiah, W. (2011). The tuna fishing industry: A new outlook on fish protein hydrolysates. Comprehensive Reviews in Food Science and Food Safety, 10(4), 195-207.
Hochuli, E., Bannwarth, W., Döbeli, H., Gentz, R., & Stüber, D. (1988). Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbent. Bio/technology, 6(11), 1321-1325.
Hou, Y., Hossain, G. S., Li, J., Shin, H. D., Du, G., Chen, J., & Liu, L. (2017). Metabolic engineering of cofactor flavin adenine dinucleotide (FAD) synthesis and regeneration in Escherichia coli for production of α‐keto acids. Biotechnology and Bioengineering, 114(9), 1928-1936.
Islam, M. S., Khan, S., & Tanaka, M. (2004). Waste loading in shrimp and fish processing effluents: potential source of hazards to the coastal and nearshore environments. Marine pollution bulletin, 49(1-2), 103-110.
Kechaou, E. S., Dumay, J., Donnay-Moreno, C., Jaouen, P., Gouygou, J.-P., Bergé, J.-P., & Amar, R. B. (2009). Enzymatic hydrolysis of cuttlefish (Sepia officinalis) and sardine (Sardina pilchardus) viscera using commercial proteases: Effects on lipid distribution and amino acid composition. Journal of bioscience and bioengineering, 107(2), 158-164.
Kim, Y., Kreke, T., & Ladisch, M. R. (2013). Reaction mechanisms and kinetics of xylo‐oligosaccharide hydrolysis by dicarboxylic acids. AIChE Journal, 59(1), 188-199.
Kohlmeier, M. (2015). Nutrient metabolism: structures, functions, and genes. Academic Press.
Kristinsson, H. G., & Rasco, B. A. (2000). Fish protein hydrolysates: production, biochemical, and functional properties. Critical reviews in food science and nutrition, 40(1), 43-81.
Letelier-Gordo, C. O., Aalto, S. L., Suurnäkki, S., & Pedersen, P. B. (2020). Increased sulfate availability in saline water promotes hydrogen sulfide production in fish organic waste. Aquacultural Engineering, 89, 102062.
Liao, P., Jones, L., Lau, A., Walkemeyer, S., Egan, B., & Holbek, N. (1997). Composting of fish wastes in a full-scale invessel system. Bioresource Technology, 59(2-3), 163-168.
Liu, M., Lu, X., Khan, A., Ling, Z., Wang, P., Tang, Y., Liu, P., & Li, X. (2019). Reducing methylmercury accumulation in fish using Escherichia coli with surface-displayed methylmercury-binding peptides. J Hazard Mater, 367, 35-42.
Liu, Z. J., & Cordes, J. (2004). DNA marker technologies and their applications in aquaculture genetics. Aquaculture, 238(1-4), 1-37.
Martinez, A., Rodriguez, M. E., York, S. W., Preston, J. F., & Ingram, L. O. (2000). Effects of Ca (OH) 2 treatments (“overliming”) on the composition and toxicity of bagasse hemicellulose hydrolysates. Biotechnology and Bioengineering, 69(5), 526-536.
Martone, C. B., Borla, O. P., & Sánchez, J. J. (2005). Fishery by-product as a nutrient source for bacteria and archaea growth media. Bioresource Technology, 96(3), 383-387.
Motta, P., Molla, G., Pollegioni, L., & Nardini, M. (2016). Structure-function relationships in L-amino acid deaminase, a flavoprotein belonging to a novel class of biotechnologically relevant enzymes. Journal of Biological Chemistry, 291(20), 10457-10475.
Murakami, T., Matsuo, M., Shimizu, A., & Shimomura, Y. (2005). Dissociation of branched-chain α-keto acid dehydrogenase kinase (BDK) from branched-chain α-keto acid dehydrogenase complex (BCKDC) by BDK inhibitors. Journal of nutritional science and vitaminology, 51(1), 48-50.
Najafian, L., & Babji, A. (2012). A review of fish-derived antioxidant and antimicrobial peptides: Their production, assessment, and applications. Peptides, 33(1), 178-185.
Negahdar, L., Delidovich, I., & Palkovits, R. (2016). Aqueous-phase hydrolysis of cellulose and hemicelluloses over molecular acidic catalysts: Insights into the kinetics and reaction mechanism. Applied catalysis B: environmental, 184, 285-298.
Nshimiyimana, P., Liu, L., & Du, G. (2019). Engineering of L-amino acid deaminases for the production of α-keto acids from L-amino acids. Bioengineered, 10(1), 43-51.
Ovissipour, M., Abedian Kenari, A., Motamedzadegan, A., & Nazari, R. M. (2012). Optimization of enzymatic hydrolysis of visceral waste proteins of yellowfin tuna (Thunnus albacares). Food and bioprocess technology, 5(2), 696-705.
Pasupuleti, V. K., & Braun, S. (2008). State of the art manufacturing of protein hydrolysates. Protein hydrolysates in biotechnology, 11-32.
Pei, S., Ruan, X., Liu, J., Song, W., Chen, X., Luo, Q., Liu, L., & Wu, J. (2020). Enhancement of α-ketoisovalerate production by relieving the product inhibition of L-amino acid deaminase from Proteus mirabilis. Chinese Journal of Chemical Engineering, 28(8), 2190-2199.
Pippo, W. A., & Luengo, C. A. (2013). Sugarcane energy use: accounting of feedstock energy considering current agro-industrial trends and their feasibility. International Journal of Energy and Environmental Engineering, 4(1), 1-13.
Raspail, C., Graindorge, M., Moreau, Y., Crouzy, S., Lefèbvre, B., Robin, A. Y., Dumas, R., & Matringe, M. (2011). 4-hydroxyphenylpyruvate dioxygenase catalysis: identification of catalytic residues and production of a hydroxylated intermediate shared with a structurally unrelated enzyme. Journal of Biological Chemistry, 286(29), 26061-26070.
Saha, B. C. (2003). Hemicellulose bioconversion. Journal of industrial microbiology and biotechnology, 30(5), 279-291.
Sengupta, M., & Austin, S. (2011). Prevalence and significance of plasmid maintenance functions in the virulence plasmids of pathogenic bacteria. Infection and immunity, 79(7), 2502-2509.
Sezonov, G., Joseleau-Petit, D., & d′Ari, R. (2007). Escherichia coli physiology in Luria-Bertani broth. Journal of bacteriology, 189(23), 8746-8749.
Sharholy, M., Ahmad, K., Mahmood, G., & Trivedi, R. (2008). Municipal solid waste management in Indian cities–A review. Waste management, 28(2), 459-467.
Siddik, M. A., Howieson, J., Fotedar, R., & Partridge, G. J. (2021). Enzymatic fish protein hydrolysates in finfish aquaculture: a review. Reviews in Aquaculture, 13(1), 406-430.
Souissi, N., Ellouz-Triki, Y., Bougatef, A., Blibech, M., & Nasri, M. (2008). Preparation and use of media for protease-producing bacterial strains based on by-products from Cuttlefish (Sepia officinalis) and wastewaters from marine-products processing factories. Microbiological Research, 163(4), 473-480.
Su, Y., Liu, C., Fang, H., & Zhang, D. (2020). Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine. Microbial cell factories, 19(1), 1-12.
Tsai, W., Chou, Y., & Chang, Y. (2004). Progress in energy utilization from agrowastes in Taiwan. Renewable and Sustainable Energy Reviews, 8(5), 461-481.
Tsai, Y.-H., Chang, S.-C., & Kung, H.-F. (2007). Histamine contents and histamine-forming bacteria in natto products in Taiwan. Food Control, 18(9), 1026-1030.
Villamil, O., Váquiro, H., & Solanilla, J. F. (2017). Fish viscera protein hydrolysates: Production, potential applications and functional and bioactive properties. Food Chemistry, 224, 160-171.
Wyman, C. E., Decker, S. R., Himmel, M. E., Brady, J. W., Skopec, C. E., & Viikari, L. (2005). Hydrolysis of cellulose and hemicellulose. Polysaccharides: Structural diversity and functional versatility, 1, 1023-1062.
Zanchi, N. E., Gerlinger-Romero, F., Guimaraes-Ferreira, L., de Siqueira Filho, M. A., Felitti, V., Lira, F. S., Seelaender, M., & Lancha, A. H. (2011). HMB supplementation: clinical and athletic performance-related effects and mechanisms of action. Amino acids, 40(4), 1015-1025.
Zhang, S., Wang, J., & Jiang, H. (2021). Microbial production of value-added bioproducts and enzymes from molasses, a by-product of sugar industry. Food Chemistry, 346, 128860.
Zhou, Z., Liu, D., & Zhao, X. (2021). Conversion of lignocellulose to biofuels and chemicals via sugar platform: an updated review on chemistry and mechanisms of acid hydrolysis of lignocellulose. Renewable and Sustainable Energy Reviews, 146, 111169.
Zhu, Y., Li, J., Liu, L., Du, G., & Chen, J. (2011). Production of α-ketoisocaproate via free-whole-cell biotransformation by Rhodococcus opacus DSM 43250 with L-leucine as the substrate. Enzyme and microbial technology, 49(4), 321-325. |