博碩士論文 109328009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.139.97.157
姓名 吳宜庭(Yi-Ting Wu)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 氟化石墨烯複合結構在鋰金屬電池中的雙功能陽極之機制探討
(The mechanism of the dual-functional anode by using the fluorinated graphene composite structure in lithium metal battery)
相關論文
★ 捲對捲乾轉印方法於製作高效能石墨烯透明導電膜之研究★ 利用氟素高分子摻雜於提升石墨烯導電膜的效能 與穩定性之研究
★ 以石墨烯混成陶瓷粉末於製作高導熱及高電阻之聚亞醯胺薄膜的研究★ 以奈米銅催化輔助控制多孔石墨烯之孔隙結構及其於超級電容之研究
★ 研究超潔淨石墨烯之場效電晶體 於提升基因感測器之效能★ 利用氟化自組裝膜輔助轉印石墨烯薄膜及其於場效電晶體特性之研究
★ 多孔石墨烯邊界態之氮改質於超級電容的效能研究★ 石墨烯場效應電晶體應用於DNA生醫感測晶片之元件整合和效能評估的研究
★ 添加氟化石墨烯於奈米高分子複合材料以增強防 腐性能★ 石墨烯功能性改質於鋰離子電池負極材料 之研究
★ 紫外光輻照於輔助轉印高品質石墨烯之研究★ 氟化石墨烯複合結構於鋰離子電池的人工固態電解質界面膜之研究
★ 超高附著力之氟化石墨烯薄膜於固態磨潤之研究★ 真空壓印於二維材料轉印製程之研究
★ 氟化石墨烯複合材料塗層於多功能披覆之研究★ 三維結構之微孔石墨烯於超級電容器之應用與研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著科技的發展,對能源普及性和便攜性的要求越來越高,對儲能設備的要求也逐漸提高。鋰離子電池(lithium-ion battery, LIB)其高能量密度及便利性被廣泛應用於日常生活中,例如便攜式電子設備和電動汽車。然而,作為商用陽極材料的石墨其理論容量相對較低,LIB的能量密度從1990年代(80 Wh/kg)到現在(250 Wh/kg)並無太大提升。加上直接電鍍鋰的理論容量更高(>3800 mAh/g),因此鋰金屬電池(lithium metal battery, LMB)成為下一代儲能設備的發展方向。然而,鋰沉積過程中容易形成枝晶鋰,而枝晶鋰容易穿透隔離膜造成電池短路。為了解決這些問題,已經採用了幾種有效的策略,包括鋰載體(lithium host)和人工固體電解質界面膜(artificial solid electrolyte interphase, ASEI)作為鋰存儲空間和保護層,以提高和穩定陽極性能,然而目前文獻缺乏將兩種功能合併使用之研究,特別是機制的討論。
在此,本論文分為三個部分:(1)電泳改質石墨烯修飾陽極之效能提升機制: 將循環不同圈數之石墨烯(electrochemically-exfoliated graphene, ECG)、氟化石墨烯(fluorinated electrochemically-exfoliated graphene, FECG)在手套箱內拆解,後續透過能隔絕大氣之傳輸盒傳輸至掃描式電子顯微鏡(scanning electron microscope, SEM),以及透過聚焦離子束(focused ion beam, FIB)觀察陽極的斷面結構,進一步推論得出鋰在FECG薄膜內部沉積行為,並發現層間結構具重要影響。(2)電泳結構化石墨烯複合陽極之鋰沉積行為研究: 為增加更多的空孔讓鋰沉積,提出在塗層內引入3D結構的氟化石墨烯球(fluorinated electrochemically-exfoliated graphene ball, FECG-ball),形成了額外儲存鋰的空間,同時增強了塗層的機械強度,從而提高了LMB的性能穩定性。之前實驗室曾提出FECG/FECG-ball複合塗層具有2:1 (wt.)的片/球比可以顯著提高LMB中的穩定性並抑制枝晶鋰的生長。為了能更有效的使鋰沉積到多孔塗層內,提出將氟化奈米碳管(fluorinated carbon nanotube, FCNT)引入薄膜內作為成核位點,誘導鋰沿著FCNT沉積,使鋰快速且均勻的沉積。此雙功能性陽極(host & ASEI)具有低的成核過電位(50.9 mV),經過320次循環後庫倫效率為85.3%,說明FCNT的添加,確實能使鋰快速的沉積在塗層內。(3)電泳沉積多層膜(Multi-layer film)功能性陽極之特性研究: 藉由在銅箔形成ECG/FECG複合多層膜電極,藉由上述FECG的雙功能特性,使鋰離子可以快速且均勻的沉積到薄膜內,而下層的ECG具有導電特性,可還原鋰離子而促進鋰沉積,後續也透過FIB以及能量色散X射線光譜(energy-dispersive X-ray spectroscopy, EDS)確認多層膜的內部分層結構,並在後續進行的電池量測,從電化學阻抗圖譜分析(electrochemical impedance spectroscopy, EIS)可以發現相同的循環圈數(150圈) 多層膜陽極的介面傳輸阻抗(Rct)為228.5 Ω,相較於單層膜電極FECG(486.7 Ω),其阻抗顯著的降低,說明添加導電層ECG可促進鋰離子有效率地填於複合陽極中。
摘要(英) The demand for energy storage equipment is rapidly increasing with the development of technology. As one of them, lithium-ion batteries (LIB) are widely applied in portable electronic devices and electric vehicles. Cause of the low theoretical capacity of the commercial anode material (graphite), the energy density of LIB has gradually increased from the 1990s (80 Wh/kg) to the present (250 Wh/kg). Therefore, lithium metal batteries (LMB) appear to be the next-generation energy storage devices due to their high theoretical capacities (>3800 mAh/g). However, Li dendrites can form during Li deposition, which penetrates the separator and cause short circuits.
This study is divided into three parts: (1) Efficiency Improvement Mechanism of Electrophoretic Modified Graphene Anode: electrochemically-exfoliated graphene (ECG) and fluorinated electrochemically-exfoliated graphene (FECG) in different cycles are disassembled in the glove box. Subsequently, it was transmitted to a scanning electron microscope (SEM) through the air-free sample transfer shuttle, and the cross-sectional structure of the anode was observed through a focused ion beam (FIB). Further inferences are drawn to the deposition behavior of lithium inside the FECG film, and it is also found that the interlayer structure has a significant influence. (2) Study on Lithium Deposition Behavior of Electrophoretic Structured Graphene Composite Anode: In order to add more voids for lithium deposition, it is proposed to introduce a fluorinated electrochemically-exfoliated graphene ball (FECG-ball) with a 3D structure in the coating film, which forms an additional storage space for lithium and enhances the mechanical strength, thereby improving the performance stability of the LMB. It was previously proposed by the lab that the FECG/FECG-ball composite coating with a flake/ball ratio of 2:1 (wt.) could significantly improve the stability in LMB and inhibit the growth of dendrite lithium. To more efficiently deposit lithium into the porous coating, it is proposed to introduce fluorinated carbon nanotubes (FCNT) into the films as nucleation sites to induce lithium deposition along the FCNT, so that the lithium is rapidly and uniformly deposited deposition. This bifunctional anode (host & ASEI) has a low nucleation overpotential (50.9 mV) and coulombic efficiency of 85.3% after 320 cycles, indicating that the addition of FCNTs can indeed enable the rapid deposition of lithium in the coating film. (3) Study on the Characteristics of Electrophoretic Deposition of Multi-layer Film Functional Anode: With the above-mentioned dual-functionality of FECG, lithium ions can be quickly and uniformly deposited into the film, while the underlying ECG has conductive properties, which can promote lithium deposition. Subsequently, the internal layered structure of the multilayer film was confirmed by FIB and energy-dispersive X-ray spectroscopy (EDS). And in the subsequent battery measurement, from electrochemical impedance spectroscopy (EIS), it can be found that the charge transfer resistance (Rct) of the multilayer film anode for the same number of cycles (150 cycles) is 228.5 Ω, compared with the single-layer membrane electrode FECG (486.7 Ω), its resistance is significantly reduced, indicating that the addition of a conductive layer ECG can promote the efficient filling of lithium ions into the composite anode.
關鍵字(中) ★ 氟化石墨烯
★ 鋰金屬電池
★ 鋰載體
★ 人工固態電解質介面膜
關鍵字(英)
論文目次 學位論文授權書 II
學位論文延後公開申請書 III
指導教授推薦信 IV
口試委員審定書 V
中文摘要 VI
Abstract VIII
誌謝 X
總目錄 XI
表目錄 XIV
圖目錄 XV
第一章 緒論 1
第二章 文獻回顧 4
2-1 鋰金屬電池簡介與發展近況 4
2-1-1 鋰金屬電池(Lithium metal battery, LMB) 4
2-1-2 鋰載體(lithium host) 7
2-1-3 人工固態電解質介面膜 11
2-2 石墨烯簡介 16
2-3 氟化石墨烯特性 18
2-4 奈米碳管簡介 20
2-5 電泳沉積於高接著性石墨烯電極製備 22
2-6 研究動機 24
第三章 實驗方法與分析儀器 25
3-1 實驗藥品 25
3-2 材料特性分析儀器 25
3-2-1 掃描電子顯微鏡(Scanning Electron Microscope, SEM) 25
3-2-2 X射線光電子能譜儀(X-ray Photoelectron Spectroscope, XPS) 26
3-2-3 拉曼光譜儀(Raman Spectroscopy) 27
3-2-4 聚焦離子束(Focused Ion beam, FIB) 27
3-2-5 能量散射光譜儀(Energy Dispersive Spectrometer, EDS) 27
3-2-6 探針式輪廓儀(BRUKER, Dektak XT) 27
3-3 實驗製備流程 28
3-3-1 電化學剝離石墨烯之製備 28
3-3-2 使用噴霧乾燥法製備空心結構石墨烯球 29
3-3-3 使用水熱法製備氟化石墨烯(球)、氟化奈米碳管 29
3-3-4 電泳沉積法製備雙功能性(ASEI & host)陽極 30
3-4 試片名稱定義 31
3-5 鋰金屬電池組裝 32
3-6 電化學量測 32
第四章 結果與討論 33
4-1 石墨烯與石墨烯球表面形貌與結構分析 33
4-2 氟化前後石墨烯片與球及奈米碳管之材料分析 35
4-3 電泳沉積法沉積於雙功能性陽極之材料分析 38
4-4 以傳輸盒輔助電鏡觀察技術討論雙功能性薄膜充放電後的鋰沉積行為 39
4-4-1 不同循環圈數對陽極的影響 39
4-4-2 鋰沉積之機制探討 46
4-5 雙功能性陽極結構對於鋰金屬電池之影響 49
4-5-1 添加氟化石墨烯球之鋰沉積機制探討 49
4-5-2 添加氟化奈米碳管對於ASEI結構之影響 55
4-5-3 添加氟化奈米碳管之ASEI對於LMB半電池特性分析 56
4-6 多層結構ASEI膜對於LMB性能之討論 62
4-6-1 多層結構ASEI膜的結構 62
4-6-2 多層結構ASEI膜對於LMB半電池特性分析 69
第五章 結論 71
第六章 未來工作 72
參考文獻 73
參考文獻 1. Armand, M.a.J.-M.T., Building better batteries. nature, 2008. 451(7179): p. 652-657.
2. Yang, Y., S. Bremner, C. Menictas and M. Kay, Battery energy storage system size determination in renewable energy systems: A review. Renewable and Sustainable Energy Reviews, 2018. 91: p. 109-125.
3. Luna-Rubio, R., M. Trejo-Perea, D. Vargas-Vázquez and G.J. Ríos-Moreno, Optimal sizing of renewable hybrids energy systems: A review of methodologies. Solar Energy, 2012. 86(4): p. 1077-1088.
4. Cho, J., S. Jeong and Y. Kim, Commercial and research battery technologies for electrical energy storage applications. Progress in Energy and Combustion Science, 2015. 48: p. 84-101.
5. ENERGY STORAGE TECHNOLOGIES. 2015; Available from: https://www.cap-xx.com/resource/energy-storage-technologies/.
6. Zeng, X., M. Li, D. Abd El‐Hady, W. Alshitari, A.S. Al‐Bogami, J. Lu and K. Amine, Commercialization of Lithium Battery Technologies for Electric Vehicles. Advanced Energy Materials, 2019. 9(27).
7. Wang, X., W. Zeng, L. Hong, W. Xu, H. Yang, F. Wang, H. Duan, M. Tang and H. Jiang, Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nature Energy, 2018. 3(3): p. 227-235.
8. Yuan, Y., F. Wu, G. Chen, Y. Bai and C. Wu, Porous LiF layer fabricated by a facile chemical method toward dendrite-free lithium metal anode. Journal of Energy Chemistry, 2019. 37: p. 197-203.
9. Zhang, R., X.R. Chen, X. Chen, X.B. Cheng, X.Q. Zhang, C. Yan and Q. Zhang, Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendrite-Free Lithium Metal Anodes. Angew Chem Int Ed Engl, 2017. 56(27): p. 7764-7768.
10. Li, L., Z. Wu, S. Yuan and X.-B. Zhang, Advances and challenges for flexible energy storage and conversion devices and systems. Energy & Environmental Science, 2014. 7(7).
11. Winter, M., B. Barnett and K. Xu, Before Li Ion Batteries. Chem Rev, 2018. 118(23): p. 11433-11456.
12. Lu, J., Z. Chen, F. Pan, Y. Cui and K. Amine, High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries. Electrochemical Energy Reviews, 2018. 1(1): p. 35-53.
13. Asenbauer, J., T. Eisenmann, M. Kuenzel, A. Kazzazi, Z. Chen and D. Bresser, The success story of graphite as a lithium-ion anode material – fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustainable Energy & Fuels, 2020. 4(11): p. 5387-5416.
14. Yang, Y., S. Wu, Y. Zhang, C. Liu, X. Wei, D. Luo and Z. Lin, Towards efficient binders for silicon based lithium-ion battery anodes. Chemical Engineering Journal, 2021. 406.
15. Chen, X., X. Yang, F. Pan, T. Zhang, X. Zhu, J. Qiu, M. Li, Y. Mu and H. Ming, Fluorine-functionalized core-shell Si@C anode for a high-energy lithium-ion full battery. Journal of Alloys and Compounds, 2021. 884.
16. Rahman, M.A., G. Song, A.I. Bhatt, Y.C. Wong and C. Wen, Nanostructured Silicon Anodes for High-Performance Lithium-Ion Batteries. Advanced Functional Materials, 2016. 26(5): p. 647-678.
17. Su, M., H. Wan, Y. Liu, W. Xiao, A. Dou, Z. Wang and H. Guo, Multi-layered carbon coated Si-based composite as anode for lithium-ion batteries. Powder Technology, 2018. 323: p. 294-300.
18. Albertus, P., S. Babinec, S. Litzelman and A. Newman, Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nature Energy, 2017. 3(1): p. 16-21.
19. Wang, J., B. Ge, H. Li, M. Yang, J. Wang, D. Liu, C. Fernandez, X. Chen and Q. Peng, Challenges and progresses of lithium-metal batteries. Chemical Engineering Journal, 2021. 420.
20. Noh, H.J., M.H. Lee, B.G. Kim, J.H. Park, S.M. Lee and J.H. Choi, 3D Carbon-Based Porous Anode with a Pore-Size Gradient for High-Performance Lithium Metal Batteries. ACS Appl Mater Interfaces, 2021. 13(46): p. 55227-55234.
21. Xu, P., X. Lin, X. Hu, X. Cui, X. Fan, C. Sun, X. Xu, J.-K. Chang, J. Fan, R. Yuan, B. Mao, Q. Dong and M. Zheng, High reversible Li plating and stripping by in-situ construction a multifunctional lithium-pinned array. Energy Storage Materials, 2020. 28: p. 188-195.
22. Yang, C.P., Y.X. Yin, S.F. Zhang, N.W. Li and Y.G. Guo, Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat Commun, 2015. 6: p. 8058.
23. An, Y., H. Fei, G. Zeng, X. Xu, L. Ci, B. Xi, S. Xiong, J. Feng and Y. Qian, Vacuum distillation derived 3D porous current collector for stable lithium–metal batteries. Nano Energy, 2018. 47: p. 503-511.
24. Han, B., D. Feng, S. Li, Z. Zhang, Y. Zou, M. Gu, H. Meng, C. Wang, K. Xu, Y. Zhao, H. Zeng, C. Wang and Y. Deng, Self-Regulated Phenomenon of Inorganic Artificial Solid Electrolyte Interphase for Lithium Metal Batteries. Nano Lett, 2020. 20(5): p. 4029-4037.
25. Liu, S., X. Ji, J. Yue, S. Hou, P. Wang, C. Cui, J. Chen, B. Shao, J. Li, F. Han, J. Tu and C. Wang, High Interfacial-Energy Interphase Promoting Safe Lithium Metal Batteries. J Am Chem Soc, 2020. 142(5): p. 2438-2447.
26. Zhao, F., W. Deng, D. Dong, X. Zhou and Z. Liu, Seamlessly integrated alloy-polymer interphase for high-rate and long-life lithium metal anodes. Materials Today Energy, 2022. 26: p. 100988.
27. Zhou, H., S. Yu, H. Liu and P. Liu, Protective coatings for lithium metal anodes: Recent progress and future perspectives. Journal of Power Sources, 2020. 450.
28. Liu, Y., J. Wu and Y. Yang, A Double-Layer Artificial SEI Film Fabricated by Controlled Electrochemical Reduction of LiODFB-FEC Based Electrolyte for Dendrite-Free Lithium Meal Anode. Journal of The Electrochemical Society, 2020. 167(16).
29. Wan, J., Y.X. Song, W.P. Chen, H.J. Guo, Y. Shi, Y.J. Guo, J.L. Shi, Y.G. Guo, F.F. Jia, F.Y. Wang, R. Wen and L.J. Wan, Micromechanism in All-Solid-State Alloy-Metal Batteries: Regulating Homogeneous Lithium Precipitation and Flexible Solid Electrolyte Interphase Evolution. J Am Chem Soc, 2021. 143(2): p. 839-848.
30. Lee, Y.-G., S. Fujiki, C. Jung, N. Suzuki, N. Yashiro, R. Omoda, D.-S. Ko, T. Shiratsuchi, T. Sugimoto, S. Ryu, J.H. Ku, T. Watanabe, Y. Park, Y. Aihara, D. Im and I.T. Han, High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nature Energy, 2020. 5(4): p. 299-308.
31. Chen, L., X. Fan, X. Ji, J. Chen, S. Hou and C. Wang, High-Energy Li Metal Battery with Lithiated Host. Joule, 2019. 3(3): p. 732-744.
32. Cheng, Y., J. Chen, Y. Chen, X. Ke, J. Li, Y. Yang and Z. Shi, Lithium Host:Advanced architecture components for lithium metal anode. Energy Storage Materials, 2021. 38: p. 276-298.
33. Liu, S., A. Wang, Q. Li, J. Wu, K. Chiou, J. Huang and J. Luo, Crumpled Graphene Balls Stabilized Dendrite-free Lithium Metal Anodes. Joule, 2018. 2(1): p. 184-193.
34. Liu, H., J. Di, P. Wang, R. Gao, H. Tian, P. Ren, Q. Yuan, W. Huang, R. Liu, Q. Liu and M. Feng, A novel design of 3D carbon host for stable lithium metal anode. Carbon Energy, 2022.
35. Zhou, J., F. Wu, G. Wei, Y. Hao, Y. Mei, L. Li, M. Xie and R. Chen, Lithium-metal host anodes with top-to-bottom lithiophilic gradients for prolonged cycling of rechargeable lithium batteries. Journal of Power Sources, 2021. 495.
36. Chen, H., A. Pei, J. Wan, D. Lin, R. Vilá, H. Wang, D. Mackanic, H.-G. Steinrück, W. Huang, Y. Li, A. Yang, J. Xie, Y. Wu, H. Wang and Y. Cui, Tortuosity Effects in Lithium-Metal Host Anodes. Joule, 2020. 4(4): p. 938-952.
37. Feng, X., H.-H. Wu, B. Gao, M. Świętosławski, X. He and Q. Zhang, Lithiophilic N-doped carbon bowls induced Li deposition in layered graphene film for advanced lithium metal batteries. Nano Research, 2021. 15(1): p. 352-360.
38. Zhang, J., Q. Li, Y. Zeng, Z. Tang, D. Sun, D. Huang, Z. Peng, Y. Tang and H. Wang, Molybdenum host and interphase induced decentralized lithium deposition for dendrite-free lithium metal anodes. Chemical Engineering Journal, 2021. 426.
39. Cheng, X.B., R. Zhang, C.Z. Zhao, F. Wei, J.G. Zhang and Q. Zhang, A Review of Solid Electrolyte Interphases on Lithium Metal Anode. Adv Sci (Weinh), 2016. 3(3): p. 1500213.
40. Gao, S., F. Sun, N. Liu, H. Yang and P.-F. Cao, Ionic conductive polymers as artificial solid electrolyte interphase films in Li metal batteries – A review. Materials Today, 2020. 40: p. 140-159.
41. Yu, Z., Y. Cui and Z. Bao, Design Principles of Artificial Solid Electrolyte Interphases for Lithium-Metal Anodes. Cell Reports Physical Science, 2020. 1(7).
42. Wang, G., X. Xiong, Z. Lin, J. Zheng, Z. Fenghua, Y. Li, Y. Liu, C. Yang, Y. Tang and M. Liu, Uniform Li deposition regulated via three-dimensional polyvinyl alcohol nanofiber networks for effective Li metal anodes. Nanoscale, 2018. 10(21): p. 10018-10024.
43. Wang, L., L. Zhang, Q. Wang, W. Li, B. Wu, W. Jia, Y. Wang, J. Li and H. Li, Long lifespan lithium metal anodes enabled by Al2O3 sputter coating. Energy Storage Materials, 2018. 10: p. 16-23.
44. Assegie, A.A., C.C. Chung, M.C. Tsai, W.N. Su, C.W. Chen and B.J. Hwang, Multilayer-graphene-stabilized lithium deposition for anode-Free lithium-metal batteries. Nanoscale, 2019. 11(6): p. 2710-2720.
45. Zhao, Y., X. Yang, Q. Sun, X. Gao, X. Lin, C. Wang, F. Zhao, Y. Sun, K.R. Adair, R. Li, M. Cai and X. Sun, Dendrite-free and minimum volume change Li metal anode achieved by three-dimensional artificial interlayers. Energy Storage Materials, 2018. 15: p. 415-421.
46. Foroozan, T., F.A. Soto, V. Yurkiv, S. Sharifi‐Asl, R. Deivanayagam, Z. Huang, R. Rojaee, F. Mashayek, P.B. Balbuena and R. Shahbazian‐Yassar, Synergistic Effect of Graphene Oxide for Impeding the Dendritic Plating of Li. Advanced Functional Materials, 2018. 28(15).
47. Wondimkun, Z.T., T.T. Beyene, M.A. Weret, N.A. Sahalie, C.-J. Huang, B. Thirumalraj, B.A. Jote, D. Wang, W.-N. Su, C.-H. Wang, G. Brunklaus, M. Winter and B.-J. Hwang, Binder-free ultra-thin graphene oxide as an artificial solid electrolyte interphase for anode-free rechargeable lithium metal batteries. Journal of Power Sources, 2020. 450.
48. Zhou, Y., X. Zhang, Y. Ding, L. Zhang and G. Yu, Reversible Deposition of Lithium Particles Enabled by Ultraconformal and Stretchable Graphene Film for Lithium Metal Batteries. Adv Mater, 2020. 32(48): p. e2005763.
49. Novoselov, K.S., A.K. Geim, S.V. Morozov, Y.Z. D. Jiang, S.V. Dubonos, I.V. Grigorieva and A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films. Science, 2004. 306(5696): p. 666-669.
50. Lee, C., X. Wei, J.W. Kysar and J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 2008. 321(5887): p. 385-388.
51. Novoselov, K.S., A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos and A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005. 438(7065): p. 197-200.
52. Balandin, A.A., S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C.N. Lau, Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters, 2008. 8(3): p. 902-907.
53. Zhu, Y., S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts and R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater, 2010. 22(35): p. 3906-24.
54. Hashmi, A., V. Nayak, K.R. Singh, B. Jain, M. Baid, F. Alexis and A.K. Singh, Potentialities of graphene and its allied derivatives to combat against SARS-CoV-2 infection. Mater Today Adv, 2022. 13: p. 100208.
55. Su, C.-Y., A.-Y. Lu, Y. Xu, F.-R. Chen, A.N. Khlobystov and L.-J. Li, High-Quality Thin Graphene Films from Fast Electrochemical Exfolia. ACS nano, 2011. 5: p. 2332-2339.
56. Yao, Y., X. Zhao, A.A. Razzaq, Y. Gu, X. Yuan, R. Shah, Y. Lian, J. Lei, Q. Mu, Y. Ma, Y. Peng, Z. Deng and Z. Liu, Mosaic rGO layers on lithium metal anodes for the effective mediation of lithium plating and stripping. Journal of Materials Chemistry A, 2019. 7(19): p. 12214-12224.
57. Liu, Y., J. Li, X. Chen and J. Luo, Fluorinated Graphene: A Promising Macroscale Solid Lubricant under Various Environments. ACS Appl Mater Interfaces, 2019. 11(43): p. 40470-40480.
58. Elias, D.C., R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, A.C. Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Geim and K.S. Novoselov, Control of Graphene′s Properties by Reversible Hydrogenation: Evidence for Graphane. Science, 2009. 323(5914): p. 610-613.
59. Huang, W., Q.-X. Pei, Z. Liu and Y.-W. Zhang, Thermal conductivity of fluorinated graphene: A non-equilibrium molecular dynamics study. Chemical Physics Letters, 2012. 552: p. 97-101.
60. Wang, B., J. Wang and J. Zhu, Fluorination of Graphene: A Spectroscopic and Microscopic Study. ACS Nano, 2014. 8(2): p. 1862-1870.
61. Cheng, H., Y. Mao, J. Xie, Y. Lu and X. Zhao, Dendrite-Free Fluorinated Graphene/Lithium Anodes Enabling in Situ LiF Formation for High-Performance Lithium-Oxygen Cells. ACS Appl Mater Interfaces, 2019. 11(43): p. 39737-39745.
62. Amatucci, G.G. and N. Pereira, Fluoride based electrode materials for advanced energy storage devices. Journal of Fluorine Chemistry, 2007. 128(4): p. 243-262.
63. Li, Z., X. Li, L. Zhou, Z. Xiao, S. Zhou, X. Zhang, L. Li and L. Zhi, A synergistic strategy for stable lithium metal anodes using 3D fluorine-doped graphene shuttle-implanted porous carbon networks. Nano Energy, 2018. 49: p. 179-185.
64. Wang, J., Z. Zhang, H. Ying, G. Han and W.-Q. Han, In-situ formation of LiF-rich composite interlayer for dendrite-free all-solid-state lithium batteries. Chemical Engineering Journal, 2021. 411.
65. Cheng, H., Y. Mao, Y. Lu, P. Zhang, J. Xie and X. Zhao, Trace fluorinated-carbon-nanotube-induced lithium dendrite elimination for high-performance lithium-oxygen cells. Nanoscale, 2020. 12(5): p. 3424-3434.
66. Shan, Q., Y. Fang, X. Tian, L. Yang, P. Li and X. Feng, Interconnected 3D fluorinated graphene host enables an ultrastable lithium metal anode. New Journal of Chemistry, 2022. 46(19): p. 8981-8990.
67. Tan, J., F.A. Soto, J. Noh, P. Wu, D.R. Yadav, K. Xie, P.B. Balbuena and C. Yu, Large areal capacity and dendrite-free anodes with long lifetime enabled by distributed lithium plating with mossy manganese oxides. Journal of Materials Chemistry A, 2021. 9(14): p. 9291-9300.
68. Zhang, W., H. Jin, Y. Zhang, Y. Du, Z. Wang and J. Zhang, 3D Lithiophilic and Conductive N-CNT@Cu2O@Cu Framework for a Dendrite-Free Lithium Metal Battery. Chemistry of Materials, 2020. 32(22): p. 9656-9663.
69. Kaur, R., Carbon Nanotubes: A Review Article. International Journal for Research in Applied Science and Engineering Technology, 2018. 6(4): p. 5075-5079.
70. Tang, Y., J. Sha, N. Wang, R. Zhang, L. Ma, C. Shi, E. Liu and N. Zhao, Covalently bonded 3D rebar graphene foam for ultrahigh-areal-capacity lithium-metal anodes by in-situ loose powder metallurgy synthesis. Carbon, 2020. 158: p. 536-544.
71. Wang, G., T. Liu, X. Fu, Z. Wu, M. Liu and X. Xiong, Lithiophilic amide-functionalized carbon nanotube skeleton for dendrite-free lithium metal anodes. Chemical Engineering Journal, 2021. 414.
72. Sin, Y.-Y., C.-C. Huang, C.-N. Lin, J.-K. Chih, Y.-L. Hsieh, I.Y. Tsao, J. Li and C.-Y. Su, Ultrastrong adhesion of fluorinated graphene on a substrate: In situ electrochemical conversion to ionic-covalent bonding at the interface. Carbon, 2020. 169: p. 248-257.
73. Jamaluddin, A., Graphene-Modified Electrode for Advanced Anode Materials in Lithium-Ion Batteries. 國立中央大學, 民國110年01月. 博士論文.
74. 曾國豪, 氟化石墨烯複合結構於鋰離子電池的人工固態電解質界面膜之研究. 國立中央大學, 民國111年01月. 碩士論文.
75. Jamaluddin, A., Y.-Y. Sin, E. Adhitama, A. Prayogi, Y.-T. Wu, J.-K. Chang and C.-Y. Su, Fluorinated graphene as a dual-functional anode to achieve dendrite-free and high-performance lithium metal batteries. Carbon, 2022. 197: p. 141-151.
76. Ho, K.I., C.H. Huang, J.H. Liao, W. Zhang, L.J. Li, C.S. Lai and C.Y. Su, Fluorinated graphene as high performance dielectric materials and the applications for graphene nanoelectronics. Sci Rep, 2014. 4: p. 5893.
77. Lee, Y.K., C.H. Lee, G.S. Kang, K. Eom, S.Y. Cho, S. Lee and H.I. Joh, Understanding an Exceptionally Fast and Stable Li-Ion Charging of Highly Fluorinated Graphene with Fine-Controlled C-F Configuration. ACS Appl Mater Interfaces, 2021. 13(45): p. 53767-53776.
78. Sun, S., S. Myung, G. Kim, D. Lee, H. Son, M. Jang, E. Park, B. Son, Y.-G. Jung, U. Paik and T. Song, Facile ex situ formation of a LiF–polymer composite layer as an artificial SEI layer on Li metal by simple roll-press processing for carbonate electrolyte-based Li metal batteries. Journal of Materials Chemistry A, 2020. 8(33): p. 17229-17237.
指導教授 蘇清源(Ching-Yuan Su) 審核日期 2022-9-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明