博碩士論文 109328011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:18.232.31.206
姓名 李長軒(Chang-Xuan Li)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 發展應用脈衝雷射沉積製備奈米顆粒堆疊多孔觸媒層與滴塗聚苯並咪唑介面層製作高溫型質子交換膜燃料電池
(Development of high-temperature proton-exchange-membrane fuel cell based on pulsed laser deposition-prepared nanoporous thin-film catalyst layer and drop-casted polybenzimidazole interfacial layer)
相關論文
★ 定開孔率下流道設計與疏水流場對質子交換膜燃料電池之性能影響★ 熱風循環烘箱熱傳特性研究
★ 以陽極處理製備奈米結構之氧化鐵光觸媒薄膜應用在光電化學產氫★ 規則多孔碳應用在燃料電池陰極觸媒擔體之研究
★ 鉑錫/多孔碳觸媒應用於燃料電池陰極反應之研究★ 腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究
★ 碎形理論應用在質子交換膜燃料電池中氣體擴散層熱傳導係數之研究★ 中溫固態氧化物燃料電池複合系統分析
★ 中文質子傳輸型固態氧化物燃料電池陽極之研究★ 鋯摻雜鋇鈰釔氧化物微結構與電化學特性之研究
★ 直接甲醇燃料電池氣體擴散層之研究★ 不同流道設計之透明質子交換膜燃料電池陰極水生成現象探討
★ 鋰離子電池陰極材料LiCoO2粉體尺寸與形貌對電池性能的影響★ 多孔性碳材應用於質子交換膜燃料電池觸媒層之研究
★ 多孔材應用於質子交換膜燃料電池散熱之研究★ 質子交換膜燃料電池發泡材流道與傳統流道之模擬分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 為減少高溫質子交換膜燃料電池(HT-PEMFC)觸媒層中貴金屬的擔載量,本研究採用脈衝雷射沉積(PLD)在氣體擴散層表面製備納米顆粒堆疊多孔觸媒層。並將聚苯並咪唑滴塗在觸媒層上作為介面層,形成電極。並通過熱壓將電極夾在吸附磷酸的商用聚苯並咪唑(PBI)質子交換膜的兩側,形成膜電極組(MEA)。脈衝雷射沉積製備的奈米顆粒堆疊觸媒層具有良好的電子傳輸路徑,可以提高觸媒的利用率,減少鉑的用量。採用滴塗法在觸媒層上形成PBI膜,可以改善觸媒層與質子交換膜的接觸,同時增加電化學反應的三相界面。本論文首先對商用PBI膜的磷酸摻雜參數進行了優化,以避免過度吸附磷酸,避免其滲入觸媒層造成酸淹現象,並具合適的質子傳導率和機械強度。由於HT-PEMFC的工作溫度高於水的沸點,質子在觸媒層中的傳輸依賴於磷酸間和水分子之間的跳躍機制。在催化劑層上直接滴塗PBI薄膜可以提供固定的磷酸吸附位點,形成質子通道。與優化後的滴塗聚苯並咪唑膜在其厚度為50 nm時和未滴塗PBI膜的電池相比,在160 oC和0.6 V的測試條件下,燃料電池電流密度可提高105.3%。
摘要(英) In order to reduce the precious metals loading in the catalyst layer of high-temperature proton exchange membrane fuel cells (HT-PEMFC), this study uses pulsed laser deposition to prepare nanoparticle stacked porous catalyst layer on the surface of the gas diffusion layer. And the polybenzimidazole was drop-casted on the catalyst layer as the interface layer to form an electrode. And then, electrodes were sandwiched on both sides of the phosphoric acid imbibed commercial polybenzimidazole (PBI) proton exchange membrane by hot-pressing to form a membrane electrode assembly (MEA). The nanoparticle stacked catalyst layer prepared by pulsed laser deposition has good electron transporting path, which can improve the utilization of the catalyst and reduce the amount of platinum. Using the drop-coating method to form a film on the catalyst layer can improve the contact between the catalyst layer and the proton exchange membrane and, at the same time, increase the three-phase interface of the electrochemical reaction. This thesis first optimized the phosphoric acid embedding parameters of commercial PBI membranes to avoid acid flooding caused by the infiltration of excessively adsorbed phosphoric acid through the catalyst layer and to have suitable proton conductivity and mechanical strength. Since the operating temperature of the HT-PEMFC is higher than the boiling point of water, the proton transporting in catalyst layer relies on hopping mechanism between phosphoric acid and water molecules. Direct drop-casting of PBI film on the catalyst layer can provide fixed phosphoric acid adsorption sites to form proton channels. Comparing the optimized drop-coated polybenzimidazole membrane on catalyst layer of a thickness of 50 nm and without casting PBI membrane, the fuel cell current density can be increased by 105.3% with test conditions of 160 oC and 0.6 V.
關鍵字(中) ★ 高溫型質子交換膜燃料電池
★ 脈衝雷射沉積
★ 觸媒減量
★ 滴塗成膜技術
關鍵字(英) ★ High temperature proton exchange membrane fuel cell
★ fuel cell
★ polybenzimidazole membrane
★ pulsed laser deposition
★ Pt catalyst load reduction
★ drop-casting membrane
論文目次 中文摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 ix
表目錄 xvi
符號說明 xix
第一章 緒論 1
1-1 前言 1
1-2  質子交換膜燃料電池 4
1-2-1 燃料電池種類 4
1-2-2 質子交換膜燃料電池工作原理 6
1-2-3 質子交換膜燃料電池組成結構 9
1-3  觸媒層製備與發展 15
1-3-1 製備觸媒層之方式 15
1-3-2 以不同製程製備燃料電池觸媒層之性能比較 26
1-4  研究動機與目的 29
第二章 文獻回顧 30
2-1  高溫型質子交換膜燃料電池 30
2-2  高溫型質子交換膜之研究 33
2-3  低觸媒載量與觸媒層介面改善高溫型質子交換膜燃料電池 36
2-4  奈米顆粒堆疊超薄觸媒層 39
2-5  直接於觸媒層上製備質子交換膜 42
2-6  金屬多孔材應用於燃料電池流道設計 44
第三章 實驗方法與設備 46
3-1  實驗架構流程 46
3-2  表面微結構分析 48
3-2-1 場發射掃描式電子顯微鏡 48
3-3  磷酸摻雜高溫型質子交換膜 49
3-3-1商用PBI膜浸泡磷酸製備PA-PBI膜方法與流程 49
3-3-2商用PA-PBI質子交換膜導電度量測 51
3-4  脈衝雷射沉積系統 52
3-4-1脈衝雷射系統架設 52
3-4-2奈米合金觸媒樣品製備參數 55
3-5  超音波塗佈系統架設與製備 56
3-6  滴塗PBI薄膜製備 58
3-7  高溫型質子交換膜燃料電池各元件介紹 59
3-7-1 高溫型膜電極組 59
3-7-2 鐵氟龍氣密墊片 60
3-7-3 鎳金屬多孔材 61
3-7-4 金屬集電流道板 62
3-8  高溫型燃料電池測試平台系統 63
3-8-1 燃料電池極化現象 67
3-8-2 燃料電池電化學交流阻抗頻譜分析 70
第四章 結果與討論 74
4-1  商用PBI膜吸收磷酸水之特性研究 74
4-2  超音波塗佈與PLD觸媒減量並使用於HT-PEMFC 76
4-3  改變PBI膜磷酸水摻雜量以適合PLD觸媒層 84
4-4  以滴塗PBI改善PLD觸媒層之質子傳導 93
4-5  改善電池極板流道設計與氣密元件 99
4-6  優化MEA熱壓組成方式 108
4-7  滴塗PBI膜之結構分析及不同膜厚性能比較 114
第五章 結論與未來規劃 125
5-1  結論 125
5-2  未來規劃 128
第六章 參考文獻 129
參考文獻 [1] “Record wind and solar - but also record coal and emissions,” https://ember-climate.org/insights/research/global-electricity-review-2022/
[2] “AR6 Climate Change 2021:The Physical Science Basis,” https://www.ipcc.ch/report/ar6/wg1/
[3] 〈COP26:三大重點,帶你看懂至關重要的格拉斯哥氣候會議〉,取自https://e-info.org.tw/node/232620.
[4] 〈COP26:氣候變化、淨零排放目標和達到目標的七條路〉,取自https://www.bbc.com/zhongwen/trad/world-59252590.
[5] “COP26 GOALS,” https://ukcop26.org/cop26-goals/.
[6] 〈COP26系列十三:高碳排產業如何衝刺淨零?綠色氫能將是重要解方〉,取自https://www.delta-foundation.org.tw/blogdetail/3213.
[7] R. Haider, Y. C. Wen, Z. F. Ma, D. P. Wilkinson, L. Zhang, X. X. Yuan, S. Q. Song, and J. J. Zhang, “High temperature proton exchange membrane fuel cells: progress in advanced materials and key technologies,” Chemical Society Reviews, vol. 50, pp. 1138-1187, 2021.
[8] 〈國際氫能政策發展概述〉,取自https://km.twenergy.org.tw/Document/reference_more?id=223.
[9] 〈能源轉型白皮書(核定本)〉,取自https://energywhitepaper.tw/pdf/1091118_%E8%83%BD%E6%BA%90%E8%BD%89%E5%9E%8B%E7%99%BD%E7%9A%AE%E6%9B%B8%E6%A0%B8%E5%AE%9A%E6%9C%AC.pdf
[10] 〈綠能政策再加碼 2025年太陽光電跳3倍〉,取自https://www.storm.mg/article/132859.
[11] 〈以氫燃料電池實現能源循環,促進我國淨零排放願景實現〉,取自https://trh.gase.most.ntnu.edu.tw/tw/article/content/263.
[12] Johnson Matthey PLC, “The fuel cell today industry review 2011 technical report,” Fuel Cell Today, 2011.
[13] K. Kordesch, G. Simader, “Fuel cells and their applications,” VCH Weinheim, 1996.
[14] Y. F. Zhai, H. M. Zhang, Y. Zhang, and D. M. Xing, “A novel H3PO4/Nafion-PBI composite membrane for enhanced durability of high temperature PEM fuel cells,” Journal of Power Sources, vol. 169, pp. 259-264, 2007.
[15] R. He, Q. Li, G. Xiao, and N. J. Bjerrum, “Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors,” Journal of Membrane Science, vol. 226, pp. 169-184, 2003.
[16] L. A. Zook, and J. Leddy, “Density and solubility of nafion: Recast, annealed, and commercial films,” Analytical Chemistry, vol. 68, pp. 3793-3796, 1996.
[17] H. Y. Jung, and J. W. Kim, “Role of the glass transition temperature of Nafion 117 membrane in the preparation of the membrane electrode assembly in a direct methanol fuel cell (DMFC),” International Journal of Hydrogen Energy, vol. 37, pp. 12580-12585, 2012.
[18] R. B. Sandor, “PBI (Polybenzimidazole): Synthesis, Properties and Applications,” High Performance Polymers, vol. 2, pp. 25-37, 1990.
[19] P. Staiti, M. Minutoli, and S. Hocevar, “Membranes based on phosphotungstic acid and polybenzimidazole for fuel cell application,” Journal of Power Sources, vol. 90, pp. 231-235, 2000.
[20] Z. H. Shang, R. Wycisk, P. Pintauro, “Electrospun Composite Proton-Exchange and Anion-Exchange Membranes for Fuel Cells,” Energies, Vol. 14, 2021.
[21] H. N. Su, S. J. Liao, T. Shu, H. L. Gao, “Performance of an ultra-low platinum loading membrane electrode assembly prepared by a novel catalyst sprayed membrane technique”, Journal of Power Sources, vol. 195, pp. 756-761, 2010.
[22] “Toray Engineering Co., Ltd.,” http://www.toray eng.com/lcd/coater/lineup/esc.html
[23] H. Morikawa, N. Tsuihiji, T. Mitsui, and K. Kanamura, “Preparation of Membrane Electrode Assembly for Fuel Cell by Using Electrophoretic Deposition Process”, Journal of The Electrochemical Society, Vol. 151, pp. 1733-1737, 2004.
[24] S. Cuynet, A. Caillard, T. Lecas, J. Bigarre, P. Buvat, P. Brault, “Deposition of Pt inside Fuel Cell Electrodes Using High Power Impulse Magnetron Sputtering”, Journal of Physics D: Applied Physics, Vol. 47, pp. 272001, 2014.
[25] M. S. Cogenli, S. Mukerjee, A. B. Yurtcan, “Membrane Electrode Assembly with Ultralow Platinum Loading for Cathode Electrode of PEM Fuel Cell by Using Sputter Deposition”, Fuel Cells, Vol. 15, pp. 288-297, 2015.
[26] A. Khan, B. K. Nath, J. Chutia, “Nanopillar Structured Platinum with Enhanced Catalytic Utilization for Electrochemical Reactions in PEMFC”, Electrochim Acta, Vol. 146, pp. 171-177, 2014.
[27] M. S. Saha, A. F. Gull´, R. J. Allen, S. Mukerjee, “High Performance Polymer Electrolyte Fuel Cells with Ultra-Low Pt Loading Electrodesprepared by Dual Ion-Beam Assisted Deposition”, Electrochim Acta, Vol. 51, pp. 4680-4692, 2006.
[28] 〈台灣儀器科技研究中心〉,取自https://www.itrc.narl.org.tw/Bulletin/News/ald.php
[29] T. Shu, D. Dang, D. W. Xu, R. Chen, S. J. Liao, C. T. Hsieh, A. Su, H. Y. Song, L. Du, “High-Performance MEA Prepared by Direct Deposition of Platinum on the Gas Diusion Layer Using an Atomic Layer Deposition Technique”, Electrochim Acta, Vol. 177, pp. 168-173, 2015.
[30] N. Cunningham, E. Irissou, M. Lefe`vre, M. C. Denis, D. Guay, “PEMFC Anode with very Low Pt Loadings Using Pulsed Laser Deposition”, Electrochemical and Solid-State Letters, Vol. 6, pp. 125-128, 2003.
[31] H. Qayyum, C. J. Tseng, T. W. Huang, S. Y. Chen, “Pulsed Laser Deposition of Platinum Nanoparticles as a Catalyst for High-Performance PEM Fuel Cells”, Catalysts, Vol. 6, pp. 180, 2016.
[32] T. W. Huang, H. Qayyum, G. R. Lin, S. Y. Chen, C. J. Tseng, “Production of High-Performance and Improved-Durability Pt-Catalyst/Support for Proton-Exchange-Membrane Fuel Cells with Pulsed Laser Deposition”, Journal of Physics D: Applied Physics, Vol. 49, pp. 255601, 2016.
[33] 陳晧軒:〈以滴塗製程控制Nafion自組織成膜並提升質子傳導與燃料電池功率密度〉,碩士論文,國立中央大學,中華民國一百一十年六月。
[34] H. Xu, E. Brosha, F. Garzon, F. Uribe, M. Wilson, B. Pivovar, “The Effect of Electrode Ink Processing and Composition Catalyst Utilization”, Electrochemical Society Transactions, Vol. 11, pp. 383–391, 2007.
[35] C. Wang, M. Waje, X. Wang, J. M. Tang, R. C. Haddon, Y. Yan, “Proton Exchange Membrane Fuel Cells with Carbon Nanotube based Electrodes”, Nano Lett, Vol. 4, pp. 345–348, 2004.
[36] N. Cunningham, E. Irissou, M. Lefe`vre, M. C. Denis, D. Guay, “PEMFC Anode with very Low Pt loadings using pulsed laser deposition”, Electrochemical and Solid-State Letters, Vol. 6, pp. 125-128, 2003.
[37] W. Mroz, B. Budner, W. Tokarz, P. Piela, M. L. Korwin-Pawlowski, “Ultra-Low-Loading Pulsed-Laser-Deposited Platinum Catalyst Films for Polymer Electrolyte Membrane Fuel Cells”, Journal of Power Sources, Vol. 273, pp. 885-893, 2015.
[38] F. F. Onana, N. Guillet, A. M. AlMayouf, “Modifed Pulse Electrodeposition of Pt Nanocatalyst as High-Performance Electrode for PEMFC”, Journal of Power Sources, Vol. 271, pp. 401-405, 2014.
[39] R. Haider, Y. C. Wen, Z. F. Ma, D. P. Wilkinson, L. Zhang, X. X. Yuan, S. Q. Song, and J. J. Zhang, “High temperature proton exchange membrane fuel cells: progress in advanced materials and key technologies,” Chemical Society Reviews, vol. 50, pp. 1138-1187, 2021.
[40] L. C. Xia, M. Ni, Y. W. Dai, K. Q. Zheng, and M. X. Li, “Numerical study of triple-phase boundary length in high-temperature proton exchange membrane fuel cell,” International Journal of Energy Research, vol. 46 pp.1998-2010, 2022.
[41] T. Myles, L. Bonville, and R. Maric, “Catalyst, Membrane, Free Electrolyte Challenges, and Pathways to Resolutions in High Temperature Polymer Electrolyte Membrane Fuel Cells,” Catalysts, vol. 7, pp. 16, 2017.
[42] Z. Zhou, O. Zholobko, X. F. Wu, T. Aulich, J. Thakare, and J. Hurley, “Polybenzimidazole-Based Polymer Electrolyte Membranes for High-Temperature Fuel Cells: Current Status and Prospects,” Energies, vol. 14, pp. 135, 2021.
[43] M. Boaventura, A. Mendes, “Activation procedures characterization of MEA based on phosphoric acid doped PBI membranes,” International Journal of Hydrogen Energy, Vol. 35, pp. 11649-11660, 2010.
[44] S. Galbiati, et al., “On the activation of polybenzimidazole-based membrane electrode assemblies doped with phosphoric acid,” International Journal of Hydrogen Energy, Vol. 37, pp. 14475-14481, 2012.
[45] J. Zhang, et al., “Polybenzimidazole-membrane based PEM fuel cell in the temperature range of 120-200 oC,” Journal of Power Sources, Vol. 172, pp. 163-171, 2007.
[46] M. G. Waller, et al., “Performance of high temperature PEM fuel cell materials. Part 1: effects of temperature, pressure and anode dilution,” International Journal of Hydrogen Energy, Vol. 41, pp. 2944-2954, 2016.
[47] C. Zhang, et al., “Investigation of water transport and its effect on performance of high temperature PEM fuel cells,” Electrochimica Acta, Vol. 149, pp. 271-277, 2014.
[48] S. Galbiati, et al., “Experimental study of water transport in a polybenzimidazole based high temperature PEMFC,” International Journal of Hydrogen Energy, Vol. 37, pp. 2462-2469, 2012.
[49] Z. Qi, S. Buelte, “Effect of open circuit voltage on performance and degradation of high temperature PBI-H3PO4 fuel cells,” Journal of Power Sources, Vol. 161, pp. 1126-1132, 2006.
[50] Q. Li, D. Aili, H. A. Hjuler, and J. O. Jensen, "High Temperature Polymer Electrolyte Membrane Fuel Cells : Approaches, Status, and Perspectives," Springer International Publishing, Springer, 2016.
[51] Z. Zhou, O. Zholobko, X.-F. Wu, T. Aulich, J. Thakare, and J. Hurley, “Polybenzimidazole-Based Polymer Electrolyte Membranes for High-Temperature Fuel Cells: Current Status and Prospects,” Energies, vol. 14, pp. 135, 2021.
[52] R. Zeis, “Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells,” Beilstein Journal of Nanotechnology, vol. 6, pp. 68-83, 2015.
[53] J. S. Wainright, J. T. Wang, D. Weng, R. F. Savinell, and M. Litt, “Acid-doped polybenzimidazoles - a new polymer electrolyte,” Journal of the Electrochemical Society, vol. 142, pp. L121-L123, 1995.
[54] Hydrogen and Fuel Cell Technology Office, “DOE Technical Targets for Polymer Electrolyte Membrane Fuel Cell Components,” https://www.energy.gov/eere/fuelcells/doe-technical-targets-polymer-electrolyte-membrane-fuel-cell-components.
[55] S. Martin, J. O. Jensen, Q. Li, P. L. Garcia-Ybarra, and J. L. Castillo, “Feasibility of ultra-low Pt loading electrodes for high temperature proton exchange membrane fuel cells based in phosphoric acid-doped membrane,” International Journal of Hydrogen Energy, vol. 44, pp. 28273-28282, 2019.
[56] S. Martin, Q. Li, and J. O. Jensen, “Lowering the platinum loading of high temperature polymer electrolyte membrane fuel cells with acid doped polybenzimidazole membranes,” Journal of Power Sources, vol. 293, pp. 51-56, 2015.
[57] H. Y. Du, C. H. Wang, C. S. Yang, H. C. Hsu, S. T. Chang, H. C. Huang, S. W. Lai, J. C. Chen, T. L. Yu, L. C. Chen, and K. H. Chen, “A high performance polybenzimidazole-CNT hybrid electrode for high-temperature proton exchange membrane fuel cells,” Journal of Materials Chemistry A, vol. 2, pp. 7015-7019, 2014.
[58] J. J. Zhang, H. J. Bai, W. R. Yan, J. Zhang, H. N. Wang, Y. Xiang, and S. F. Lu, “Enhancing Cell Performance and Durability of High Temperature Polymer Electrolyte Membrane Fuel Cells by Inhibiting the Formation of Cracks in Catalyst Layers,” Journal of the Electrochemical Society, vol. 167, pp. 114501, 2020.
[59] L. X. Xiao, H. F. Zhang, E. Scanlon, L. S. Ramanathan, E. W. Choe, D. Rogers, T. Apple, and B. C. Benicewicz, “High-temperature polybenzimidazole fuel cell membranes via a sol-gel process,” Chemistry of Materials, vol. 17, pp. 5328-5333, 2005.
[60] X. Deng, C. Huang, X. Pei, B. Hu, and W. Zhou, “Recent progresses and remaining issues on the ultrathin catalyst layer design strategy for high-performance proton exchange membrane fuel cell with further reduced Pt loadings: A review,” International Journal of Hydrogen Energy, vol. 47, pp. 1529-1542, 2021.
[61] J. Huang, Z. Li, and J. B. Zhang, “Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: The blessing and curse of ionomer,” Frontiers in Energy, vol. 11, pp. 334-364, 2017.
[62] T. W. Huang, H. Qayyum, G. R. Lin, S. Y. Chen, and C. J. Tseng, “Production of high-performance and improved-durability Pt-catalyst/support for proton-exchange-membrane fuel cells with pulsed laser deposition,” Journal of Physics D-Applied Physics, vol. 49, pp. 7, 2016.
[63] H. Qayyum, C. J. Tseng, T. W. Huang, and S. Y. Chen, “Pulsed Laser Deposition of Platinum Nanoparticles as a Catalyst for High-Performance PEM Fuel Cells,” Catalysts, vol. 6, pp. 13, 2016.
[64] C. C. Lang, C. H. Lin, H. H. Chen, C. J. Tseng, and S. Y. Chen, “Performance enhancement of polymer electrolyte membrane fuel cell by PtCo3 nanoporous film as high mass-specific power density catalyst using laser deposition and processing,” International Journal of Hydrogen Energy, vol. 46, pp. 33948-33956, 2021.
[65] J. Iglesia, C.-C. Lang, Y.-M. Chen, S.-y. Chen, and C.-J. Tseng, “Raising the maximum power density of nanoporous catalyst film-based polymer-electrolyte-membrane fuel cells by laser micro-machining of the gas diffusion layer,” Journal of Power Sources, vol. 436, pp. 226886, 2019.
[66] M. Cui, H. Lu, H. Jiang, Z. Cao, and X. Meng, “Phase Diagram of Continuous Binary Nanoalloys: Size, Shape, and Segregation Effects,” Scientific Reports, vol. 7, pp. 41990, 2017.
[67] M. Klingele, M. Breitwieser, R. Zengerle, and S. Thiele, “Direct deposition of proton exchange membranes enabling high performance hydrogen fuel cells,” Journal of Materials Chemistry A, vol. 3, pp. 11239-11245, 2015.
[68] S. Vierrath, M. Breitwieser, M. Klingele, B. Britton, S. Holdcroft, R. Zengerle, and S. Thiele, “The reasons for the high power density of fuel cells fabricated with directly deposited membranes," Journal of Power Sources, vol. 326, pp. 170-175, 2016.
[69] C. Yang, N. Han, Y. Wang, X.-Z. Yuan, J. Xu, H. Huang, J. Fan, H. Li, and H. Wang, “A Novel Approach to Fabricate Membrane Electrode Assembly by Directly Coating the Nafion Ionomer on Catalyst Layers for Proton-Exchange Membrane Fuel Cells,” ACS Sustainable Chemistry & Engineering, vol. 8, pp. 9803-9812, 2020.
[70] S. M. Dull, S. Xu, T. Goh, D. U. Lee, D. Higgins, M. Orazov, D. M. Koshy, P. E. Vullum, S. Kirsch, G. Huebner, J. Torgersen, T. F. Jaramillo, and F. B. Prinz, “Bottom-Up Fabrication of Oxygen Reduction Electrodes with Atomic Layer Deposition for High-Power-Density PEMFCs,” Cell Reports Physical Science, vol. 2, pp. 100297, 2021.
[71] I. Fouzai, S. Gentil, V. C. Bassetto, W. O. Silva, R. Maher, and H. H. Girault, “Catalytic layer-membrane electrode assembly methods for optimum triple phase boundaries and fuel cell performances,” Journal of Materials Chemistry A, vol. 9, pp. 11096-11123, 2021.
[72] T. A. M. Suter, K. Smith, J. Hack, L. Rasha, Z. Rana, G. M. A. Angel, P. R. Shearing, T. S. Miller, and D. J. L. Brett, “Engineering Catalyst Layers for Next-Generation Polymer Electrolyte Fuel Cells: A Review of Design, Materials, and Methods,” Advanced Energy Materials, vol. 11, pp. 2101025, 2021.
[73] X. Qian, M. Ostwal, A. Asatekin, G. M. Geise, Z. P. Smith, W. A. Phillip, R. P. Lively, and J. R. McCutcheon, “A critical review and commentary on recent progress of additive manufacturing and its impact on membrane technology,” Journal of Membrane Science, pp. 120041, 2021.
[74] J. Wind, R. Späh, W. Kaiser, and G. Böhm, “Metallic bipolar plates for PEM fuel cells,” Journal of Power Sources, vol. 105, pp. 256-260, 2002.
[75] 劉政宏等:〈高溫型質子交換膜燃料電池雙極板之技術發展〉,工業材料,卷322,頁164-170,2013。
[76] S. Porstmann, T. Wannemacher, and W. G. Drossel, “A comprehensive comparison of state-of-the-art manufacturing methods for fuel cell bipolar plates including anticipated future industry trends,” Journal of Manufacturing Processes, vol. 60, pp. 366-383, 2020.
[77] T. Bohackova, J. Ludvik, and M. Kouril, “Metallic Material Selection and Prospective Surface Treatments for Proton Exchange Membrane Fuel Cell Bipolar Plates-A Review,” Materials, vol. 14, pp. 41, 2021.
[78] Y. X. Song, C. Z. Zhang, C. Y. Ling, M. Han, R. Y. Yong, D. Sun, and J. R. Chen, “Review on current research of materials, fabrication and application for bipolar plate in proton exchange membrane fuel cell,” International Journal of Hydrogen Energy, vol. 45, pp. 29832-29847, 2020.
[79] W. Li, Z. X. Li, L. T. Liu, J. J. Geng, Y. F. Xiang, and K. K. Wang, “Recent progress of porous metal filed in bipolar plate,” Cailiao Gongcheng-Journal of Materials Engineering, vol. 48, pp. 31-40, 2020.
[80] W. Yuan, Y. Tang, X. Yang, and Z. Wan, “Porous metal materials for polymer electrolyte membrane fuel cells – A review,” Applied Energy, vol. 94, pp. 309-329, 2012.
[81] C. J. Tseng, B. T. Tsai, Z. S. Liu, T. C. Cheng, W. C. Chang, and S. K. Lo, “A PEM fuel cell with metal foam as flow distributor,” Energy Conversion and Management, vol. 62, pp. 14-21, 2012.
[82] B. T. Tsai, C. J. Tseng, Z. S. Liu, C. H. Wang, C. I. Lee, C. C. Yang, and S. K. Lo, “Effects of flow field design on the performance of a PEM fuel cell with metal foam as the flow distributor,” International Journal of Hydrogen Energy, vol. 37, pp. 13060-13066, 2012.
[83] C. J. Tseng, Y. J. Heush, C. J. Chiang, Y. H. Lee, and K. R. Lee, “Application of metal foams to high temperature PEM fuel cells,” International Journal of Hydrogen Energy, vol. 41, pp. 16196-16204, 2016.
[84] S. H. Yun, S. H. Shin, J. Y. Lee, S. J. Seo, S. H. Oh, Y. W. Choi, and S. H. Moon, “Effect of pressure on through-plane proton conductivity of polymer electrolyte membranes,” Journal of Membrane Science, vol. 417-418, pp. 210-216, 2012.
[85] H. Su, T. C. Jao, S. Pasupathi, B. J. Bladergroen, V. Linkov, B. G. Pollet, “A novel dual catalyst layer structured gas diffusion electrode for enhanced performance of high temperature proton exchange membrane fuel cell,” Journal of Power Sources, vol. 246, pp. 63-67, 2014.
[86] 黃鎮江:《燃料電池》,第四版:全華科技圖書股份有限公司,中華民國一百零六年三月。
[87] 黃亭維:〈應用脈衝雷射技術製備高穩定性與高性能之鉑奈米顆粒並應用於燃料電池觸媒層〉,碩士論文,國立中央大學,中華民國一百零五年七月。
[88] 江建叡:〈陰極金屬發泡材厚度與流道設計對高溫型質子交換膜燃料電池之影響〉,碩士論文,國立中央大學,中華民國一百零五年六月。
[89] 賴鈺諴:〈內鑲水冷流道雙極板之質子交換膜燃料電池〉,碩士論文,國立中央大學,中華民國一百零九年六月。
指導教授 曾重仁(Chung-jen Tseng) 審核日期 2022-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明