博碩士論文 109328012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:18.218.234.83
姓名 蕭慎吾(Shen-Wu Hsiao)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 氟化石墨烯複合材料塗層於多功能披覆之研究
(The study on the multifunctional coating of fluorinated graphene composite)
相關論文
★ 捲對捲乾轉印方法於製作高效能石墨烯透明導電膜之研究★ 利用氟素高分子摻雜於提升石墨烯導電膜的效能 與穩定性之研究
★ 以石墨烯混成陶瓷粉末於製作高導熱及高電阻之聚亞醯胺薄膜的研究★ 以奈米銅催化輔助控制多孔石墨烯之孔隙結構及其於超級電容之研究
★ 研究超潔淨石墨烯之場效電晶體 於提升基因感測器之效能★ 利用氟化自組裝膜輔助轉印石墨烯薄膜及其於場效電晶體特性之研究
★ 多孔石墨烯邊界態之氮改質於超級電容的效能研究★ 石墨烯場效應電晶體應用於DNA生醫感測晶片之元件整合和效能評估的研究
★ 添加氟化石墨烯於奈米高分子複合材料以增強防 腐性能★ 石墨烯功能性改質於鋰離子電池負極材料 之研究
★ 紫外光輻照於輔助轉印高品質石墨烯之研究★ 氟化石墨烯複合結構於鋰離子電池的人工固態電解質界面膜之研究
★ 超高附著力之氟化石墨烯薄膜於固態磨潤之研究★ 真空壓印於二維材料轉印製程之研究
★ 氟化石墨烯複合結構在鋰金屬電池中的雙功能陽極之機制探討★ 三維結構之微孔石墨烯於超級電容器之應用與研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 石墨烯相關材料具備高度化學與熱的穩定性、高機械強度與抗水氧穿透能力,在防腐蝕塗層的研究中,成為一種極具潛力的添加材料,可是,石墨烯卻因自身優異的導電能力,反而在複合塗層中有著添加濃度上的極限,因此將石墨烯氟化改質就成為了最好的改良方式,但是傳統的改質方式又有著高毒性、高汙染與無法均質氟化的問題,所以無法達到目前工業化的需求,而且目前文獻所提及的複合塗層塗佈方式,大多無法符合高階電子元件所需要的均勻、厚度可控,以及複雜表面塗佈等精密的需求,同時,也無法達到最大化延長腐蝕介質擴散路徑,因此,大幅度限制了防腐塗層在工業上的可應用性。本研究將提出一種相較於過去更加環境友善,且可量產的低能量氟化製程,並且使用電泳沉積法製備具有順向排列性的防腐蝕保護塗層,並透過調整塗佈時間來控制其厚度。在防腐蝕研究成果上顯示,該塗層可以在浸泡於3.5 wt.%的NaCl水溶液 30天後,仍然保持著腐蝕速率只有2.0×10-3 m/year的優異表現,相較於原高分子塗層浸泡10天提升了兩個數量級;在保護塗層的散熱表現上,含有添加材料的高分子塗層的熱傳導係數也較原先提升了97 %;另外其具有高電性阻抗,該塗層在28 kV/cm的電場下之導通電流密度僅1.32×10-8 A/cm2,展現複合塗層具多功能性。
本研究除了展現該塗層的防腐蝕能力與熱傳導能力外,創新的製備方式也符合大面積、均勻、厚度可控等工業應用的需求。憑藉著具備工業上量產與環境友善等製備條件,以及展現了多功能塗層性質的表現,本研究提供了一種在防腐蝕保護塗層上極具深入研發價值的改善方案。
摘要(英) Graphene-related materials have become potential additives in the research of anti-corrosion coatings due to their high chemical and thermal stability, high mechanical properties, and penetration resistance. However, graphene has a limited concentration added to the composite coating due to its high electrical conductivity that promotes galvanic corrosion, therefore the fluorination of graphene has become the best way to improve this issue. However, the traditional preparation method shows the problems such as the use of high toxic precursors, high pollution, and the inability to achieve homogeneous fluorination, so it cannot meet the requirement for current industrial apply applications addition, most of the composite coating methods mentioned in the literature cannot meet the requirements of uniformity, controllable thickness, and complex surface coating that are required by the high-end electronic components, and cannot maximize the extension of the diffusion path of the corrosive medium either. Therefore, the industrial application of anti-corrosion coatings is greatly limited. This study will propose a more environmentally friendly and mass-produced low-energy fluorination method than previous works. Also, the use of the electrophoretic deposition (EPD) method allows for the preparation of composite coating with adjustable thickness, from which the assembled FG flakes are highly aligned among the polymer matrix. In terms of anti-corrosion testing, the coating can still maintain an excellent corrosion rate of only 2.0×10-3 m/year after being immersed in 3.5 wt.% NaCl solution for 30 days. In terms of the heat dissipation performance of the protective coating, the thermal conductivity of the FG composite coating increased by 97% when compared with the pristine polymer. Also, the composite coating exhibit a high electrical resistance, from which the current density of the coating is only 1.32×10-8 A/cm2 when the applied electric field of 28 kV/cm. These results demonstrate the multifunctional properties of our proposed composite coating.
In addition to the corrosion resistance and thermal conductivity of the coating, the preparation method also meets the requirements of large area, uniformity, and controllable thickness. With the preparation conditions of industrial mass production and environmental friendliness, as well as the performance of multifunctional coating properties, this study shows a promising way to improve anti-corrosion protective coatings.
關鍵字(中) ★ 氟化石墨烯
★ 複合材料
★ 腐蝕
關鍵字(英) ★ Fluorinated graphene
★ composite material
★ corrosion
論文目次 學位論文授權書 I
學位論文延後公開申請書 II
指導教授推薦信 III
口試委員審定書 IV
摘要 V
Abstract VI
誌謝 VIII
總目錄 IX
圖目錄 XII
表目錄 XV
第一章 緒論 1
1-1 前言 1
1-2 二維材料作為抗腐蝕添加物的優勢與進展 3
第二章 研究背景與文獻回顧 5
2-1 石墨烯材料運用於抗腐蝕之研究 5
2-2 氟化石墨烯運用於抗腐蝕之研究 9
2-3 平行排列石墨烯結構對抗腐蝕的影響 12
2-4 石墨烯與氟化石墨烯運用於熱傳導之研究 17
2-5 實驗動機 20
第三章 實驗方法與步驟 22
3-1 實驗藥品 22
3-2 實驗製備流程 23
3-2-1 電化學剝離石墨烯製備方式 23
3-2-2 氟化石墨烯製備方式 23
3-3 氟化石墨烯化學特性與形貌分析 24
3-4 氟化石墨烯複合塗層製備 25
3-5 氟化石墨烯塗層性質分析 26
3-6 氟化石墨烯複合塗層之電化學分析 27
3-6-1 電化學性質量測 27
3-6-2 抗腐蝕結果計算與分析 28
3-7 氟化石墨烯複合塗層之熱傳導分析 30
3-8 氟化石墨烯複合塗層之崩潰電場分析 31
第四章 結果與討論 32
4-1 水熱法製備之氟化石墨烯產物性質分析 32
4-1-1 石墨烯與氟化石墨烯表面形貌分析 33
4-1-2 石墨烯與氟化石墨烯化學特性分析 33
4-2 電泳沉積石墨烯與氟化石墨烯之複合塗層分析 36
4-2-1 電泳石墨烯與氟化石墨烯之複合塗層厚度分析 36
4-2-2 電泳之複合塗層與原始溶液負載濃度分析 39
4-2-3 電泳石墨烯與氟化石墨烯之複合塗層微結構分析 40
4-3 石墨烯與氟化石墨烯之複合塗層電化學分析 43
4-3-1 順向排列對石墨烯複合塗層電化學特性之影響 43
4-3-2 石墨烯氟化對複合塗層電化學特性之影響 47
4-3-3 不同負載濃度的順向排列石墨烯之複合塗層抗腐蝕特性分析 50
4-3-4 不同負載濃度的順向排列氟化石墨烯之複合塗層抗腐蝕特性分析 53
4-3-5 順向排列氟化石墨烯塗層長效抗腐蝕分析 57
4-4 石墨烯與氟化石墨烯之複合塗層熱傳導分析 65
4-4-1 順向排列結構與石墨烯氟化對複合塗層熱傳導特性之影響 65
4-4-2 不同負載濃度之順向氟化石墨烯複合塗層熱傳導分析 67
4-5 順向排列之石墨烯與氟化石墨烯塗層崩潰電場分析 69
第五章 結論 71
第六章 未來工作 72
參考文獻 73
參考文獻 1. https://web.archive.org/web/20110914160743/http://www.corrosioncost.com/pdf/main.pdf./20220720
2. Hou, B., X. Li and X. Ma, Cuiwei Du, Dawei Zhang, Meng Zheng, Weichen Xu, Dongzhu Lu, and Fubin Ma. The cost of corrosion in china. npj Materials Degradation, 2017. 1(1): p. 1-10.
3. https://www.alltheresearch.com/report/247/Anti%20Corrosion%20Coating./20220720
4. Kowalczyk, K. and T. Spychaj, Zinc-free varnishes and zinc-rich paints modified with ionic liquids. Corrosion Science, 2014. 78: p. 111-120.
5. Ding, J., H. Zhao, L. Gu, S. Su and H. Yu, A novel waterborne epoxy coating with anticorrosion properties on rusty Steel. International Journal of Electrochemical Science, 2016. 11: p. 7066-7075.
6. https://www.pcimag.com/articles/109837-global-market-for-anti-corrosion-coatings./20220720
7. Su, Y., V. Kravets, S. Wong, J. Waters, A.K. Geim and R.R. Nair, Impermeable barrier films and protective coatings based on reduced graphene oxide. Nature Communications, 2014. 5(1): p. 1-5.
8. Shen, L., Y. Zhao, Y. Wang, R. Song, Q. Yao, S. Chen and Y. Chai, A long-term corrosion barrier with an insulating boron nitride monolayer. Journal of Materials Chemistry A, 2016. 4(14): p. 5044-5050.
9. Ding, J., H. Zhao, X. Zhao, B. Xu and H. Yu, How semiconductor transition metal dichalcogenides replaced graphene for enhancing anticorrosion. Journal of Materials Chemistry A, 2019. 7(22): p. 13511-13521.
10. Cui, G., Z. Bi, R. Zhang, J. Liu, X. Yu and Z. Li, A comprehensive review on graphene-based anti-corrosive coatings. Chemical Engineering Journal, 2019. 373: p. 104-121.
11. Novoselov, K.S., A.K. Geim, S.V. Morozov, D.-e. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva and A.A. Firsov, Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-669.
12. Mohan, V.B., R. Brown, K. Jayaraman and D. Bhattacharyya, Characterisation of reduced graphene oxide: Effects of reduction variables on electrical conductivity. Materials Science and Engineering: B, 2015. 193: p. 49-60.
13. Gospodarev, I., V. Grishaev, E. Manzhelii, E. Syrkin, S. Feodosyev and K. Minakova, Phonon heat capacity of graphene nanofilms and nanotubes. Low Temperature Physics, 2017. 43(2): p. 264-273.
14. Lee, C., W. Xiaoding and W. Jeffrey, K.; James, H. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008. 321: p. 385-388.
15. Min, K. and N.R. Aluru, Mechanical properties of graphene under shear deformation. Applied Physics Letters, 2011. 98(1): p. 013113.
16. Qiu, S., Z. Lin, Y. Zhou, D. Wang, L. Yuan, Y. Wei, T. Dai, L. Luo and G. Chen, Highly selective colorimetric bacteria sensing based on protein-capped nanoparticles. Analyst, 2015. 140(4): p. 1149-1154.
17. Zhu, Z., I. Murtaza, H. Meng and W. Huang, Thin film transistors based on two dimensional graphene and graphene/semiconductor heterojunctions. RSC advances, 2017. 7(28): p. 17387-17397.
18. Wang, H., Y. Li, Y. Li, Y. Liu, D. Lin, C. Zhu, G. Chen, A. Yang, K. Yan and H. Chen, Wrinkled graphene cages as hosts for high-capacity Li metal anodes shown by cryogenic electron microscopy. Nano letters, 2019. 19(2): p. 1326-1335.
19. Stoller, M.D., S. Park, Y. Zhu, J. An and R.S. Ruoff, Graphene-based ultracapacitors. Nano letters, 2008. 8(10): p. 3498-3502.
20. Zhang, L.L., R. Zhou and X. Zhao, Graphene-based materials as supercapacitor electrodes. Journal of Materials Chemistry, 2010. 20(29): p. 5983-5992.
21. Stankovich, D., Dikin, GHB Dommett, KM Kohlhaas, EJ Zimney, EA Stach, RD Piner, ST Nguyen, and RS Ruoff, Graphene-based composite materials. Nature, 2006. 442: p. 282.
22. Cho, E.-C., J.-H. Huang, C.-P. Li, C.-W. Chang-Jian, K.-C. Lee, Y.-S. Hsiao and J.-H. Huang, Graphene-based thermoplastic composites and their application for LED thermal management. Carbon, 2016. 102: p. 66-73.
23. Othman, N.H., M.C. Ismail, M. Mustapha, N. Sallih, K.E. Kee and R.A. Jaal, Graphene-based polymer nanocomposites as barrier coatings for corrosion protection. Progress in Organic Coatings, 2019. 135: p. 82-99.
24. Ha, H., J. Park, K. Ha, B.D. Freeman and C.J. Ellison, Synthesis and gas permeability of highly elastic poly (dimethylsiloxane)/graphene oxide composite elastomers using telechelic polymers. Polymer, 2016. 93: p. 53-60.
25. Pourhashem, S., M.R. Vaezi, A. Rashidi and M.R. Bagherzadeh, Exploring corrosion protection properties of solvent based epoxy-graphene oxide nanocomposite coatings on mild steel. Corrosion Science, 2017. 115: p. 78-92.
26. Dutta, D., A.N.F. Ganda, J.-K. Chih, C.-C. Huang, C.-J. Tseng and C.-Y. Su, Revisiting graphene–polymer nanocomposite for enhancing anticorrosion performance: A new insight into interface chemistry and diffusion model. Nanoscale, 2018. 10(26): p. 12612-12624.
27. Sun, W., Y. Yang, Z. Yang, L. Wang, J. Wang, D. Xu and G. Liu, Review on the corrosion-promotion activity of graphene and its inhibition. Journal of Materials Science & Technology, 2021. 91: p. 278-306.
28. Wang, B., J. Wang and J. Zhu, Fluorination of graphene: a spectroscopic and microscopic study. ACS nano, 2014. 8(2): p. 1862-1870.
29. Mathkar, A., T. Narayanan, L.B. Alemany, P. Cox, P. Nguyen, G. Gao, P. Chang, R. Romero‐Aburto, S.A. Mani and P. Ajayan, Synthesis of fluorinated graphene oxide and its amphiphobic properties. Particle & Particle Systems Characterization, 2013. 30(3): p. 266-272.
30. Wu, Y., W. Zhao, Y. Qiang, Z. Chen, L. Wang, X. Gao and Z. Fang, π-π interaction between fluorinated reduced graphene oxide and acridizinium ionic liquid: Synthesis and anti-corrosion application. Carbon, 2020. 159: p. 292-302.
31. Shen, L., Y. Li, W. Zhao, K. Wang, X. Ci, Y. Wu, G. Liu, C. Liu and Z. Fang, Tuning F-doped degree of rGO: Restraining corrosion-promotion activity of EP/rGO nanocomposite coating. Journal of Materials Science & Technology, 2020. 44: p. 121-132.
32. Yang, Z., W. Sun, L. Wang, S. Li, T. Zhu and G. Liu, Liquid-phase exfoliated fluorographene as a two dimensional coating filler for enhanced corrosion protection performance. Corrosion Science, 2016. 103: p. 312-318.
33. Bharadwaj, R.K., Modeling the barrier properties of polymer-layered silicate nanocomposites. Macromolecules, 2001. 34(26): p. 9189-9192.
34. Akbari, A., Sheath P. Martin ST Shinde DB Shaibani M. Banerjee PC Tkacz R. Bhattacharyya D. Majumder M, Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide. Nature Communications, 2016. 7: p. 10891.
35. Jung, S.-Y. and K.-W. Paik. Effects of alignment of graphene flakes on water permeability of graphene-epoxy composite film. in 2014 IEEE 64th Electronic Components and Technology Conference (ECTC). 2014. IEEE.
36. Jiao, W., M. Shioya, R. Wang, F. Yang, L. Hao, Y. Niu, W. Liu, L. Zheng, F. Yuan and L. Wan, Improving the gas barrier properties of Fe3O4/graphite nanoplatelet reinforced nanocomposites by a low magnetic field induced alignment. Composites Science and Technology, 2014. 99: p. 124-130.
37. Wang, F., H. Wang and J. Mao, Aligned-graphene composites: a review. Journal of Materials Science, 2019. 54(1): p. 36-61.
38. Shivanandareddy, A.B., S. Krishnamurthy, V. Lakshminarayanan and S. Kumar, Mutually ordered self-assembly of discotic liquid crystal–graphene nanocomposites. Chemical Communications, 2014. 50(6): p. 710-712.
39. Aboutalebi, S.H., M.M. Gudarzi, Q.B. Zheng and J.K. Kim, Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions. Advanced Functional Materials, 2011. 21(15): p. 2978-2988.
40. Yousefi, N., X. Lin, Q. Zheng, X. Shen, J.R. Pothnis, J. Jia, E. Zussman and J.-K. Kim, Simultaneous in situ reduction, self-alignment and covalent bonding in graphene oxide/epoxy composites. Carbon, 2013. 59: p. 406-417.
41. Ding, J., H. Zhao, M. Zhou, P. Liu and H. Yu, Super-anticorrosive inverse nacre-like graphene-epoxy composite coating. Carbon, 2021. 181: p. 204-211.
42. Xia, S., M. Ni, T. Zhu, Y. Zhao and N. Li, Ultrathin graphene oxide nanosheet membranes with various d-spacing assembled using the pressure-assisted filtration method for removing natural organic matter. Desalination, 2015. 371: p. 78-87.
43. Liu, W., N. Song, Y. Wu, Y. Gai and Y. Zhao, Preparation of layer-aligned graphene composite film with enhanced thermal conductivity. Vacuum, 2017. 138: p. 39-47.
44. Song, N., D. Jiao, P. Ding, S. Cui, S. Tang and L. Shi, Anisotropic thermally conductive flexible films based on nanofibrillated cellulose and aligned graphene nanosheets. Journal of Materials Chemistry C, 2016. 4(2): p. 305-314.
45. Li, Q., Y. Guo, W. Li, S. Qiu, C. Zhu, X. Wei, M. Chen, C. Liu, S. Liao and Y. Gong, Ultrahigh thermal conductivity of assembled aligned multilayer graphene/epoxy composite. Chemistry of Materials, 2014. 26(15): p. 4459-4465.
46. Liang, Q., X. Yao, W. Wang, Y. Liu and C.P. Wong, A three-dimensional vertically aligned functionalized multilayer graphene architecture: an approach for graphene-based thermal interfacial materials. ACS nano, 2011. 5(3): p. 2392-2401.
47. Zhao, L., H. Zhang, N.H. Kim, D. Hui, J.H. Lee, Q. Li, H. Sun and P. Li, Preparation of graphene oxide/polyethyleneimine layer-by-layer assembled film for enhanced hydrogen barrier property. Composites Part B: Engineering, 2016. 92: p. 252-258.
48. Zhao, X., Q. Zhang, Y. Hao, Y. Li, Y. Fang and D. Chen, Alternate multilayer films of poly (vinyl alcohol) and exfoliated graphene oxide fabricated via a facial layer-by-layer assembly. Macromolecules, 2010. 43(22): p. 9411-9416.
49. Zhang, D., J. Tong and B. Xia, Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly. Sensors and Actuators B: Chemical, 2014. 197: p. 66-72.
50. Kirschner, J., Z. Wang, S. Eigler, H.-P. Steinrück, C.M. Jäger, T. Clark, A. Hirsch and M. Halik, Driving forces for the self-assembly of graphene oxide on organic monolayers. Nanoscale, 2014. 6(19): p. 11344-11350.
51. Ding, J., P. Liu, M. Zhou and H. Yu, Nafion-endowed graphene super-anticorrosion performance. ACS Sustainable Chemistry & Engineering, 2020. 8(40): p. 15344-15353.
52. Ding, J., H. Zhao and H. Yu, Bio-inspired Multifunctional Graphene–Epoxy Anticorrosion Coatings by Low-Defect Engineered Graphene. ACS nano, 2022.
53. Burger, N., A. Laachachi, M. Ferriol, M. Lutz, V. Toniazzo and D. Ruch, Review of thermal conductivity in composites: Mechanisms, parameters and theory. Progress in Polymer Science, 2016. 61: p. 1-28.
54. Li, A., C. Zhang and Y.-F. Zhang, Thermal conductivity of graphene-polymer composites: Mechanisms, properties, and applications. Polymers, 2017. 9(9): p. 437.
55. Shahil, K.M. and A.A. Balandin, Graphene–multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano letters, 2012. 12(2): p. 861-867.
56. Wang, F., L.T. Drzal, Y. Qin and Z. Huang, Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites. Journal of Materials Science, 2015. 50(3): p. 1082-1093.
57. Wang, X. and P. Wu, Highly thermally conductive fluorinated graphene films with superior electrical insulation and mechanical flexibility. ACS Applied Materials & Interfaces, 2019. 11(24): p. 21946-21954.
58. Zhang, C., R. Huang, P. Wang, Y. Wang, Z. Zhou, H. Zhang, Z. Wu and L. Li, Highly compressible, thermally conductive, yet electrically insulating fluorinated graphene aerogel. ACS Applied Materials & Interfaces, 2020. 12(52): p. 58170-58178.
59. Chen, C.-H., S.-W. Yang, M.-C. Chuang, W.-Y. Woon and C.-Y. Su, Towards the continuous production of high crystallinity graphene via electrochemical exfoliation with molecular in situ encapsulation. Nanoscale, 2015. 7(37): p. 15362-15373.
60. Peng, K.-J., J.-Y. Lai and Y.-L. Liu, Nanohybrids of graphene oxide chemically-bonded with Nafion: Preparation and application for proton exchange membrane fuel cells. Journal of Membrane Science, 2016. 514: p. 86-94.
61. https://www.gamry.com/Framework%20Help/HTML5%20-%20Tripane%20-%20Audience%20A/Content/DC/Introduction_to_DC_Corrosion/Quantitative%20Corrosion%20Theory.htm./20220720
62. Tuteja, A., W. Choi, M. Ma, J.M. Mabry, S.A. Mazzella, G.C. Rutledge, G.H. McKinley and R.E. Cohen, Designing superoleophobic surfaces. Science, 2007. 318(5856): p. 1618-1622.
63. Jamaluddin, A., Y.-Y. Sin, E. Adhitama, A. Prayogi, Y.-T. Wu, J.-K. Chang and C.-Y. Su, Fluorinated graphene as a dual-functional anode to achieve dendrite-free and high-performance lithium metal batteries. Carbon, 2022. 197: p. 141-151.
64. Feng, W., P. Long, Y. Feng and Y. Li, Two‐dimensional fluorinated graphene: synthesis, structures, properties and applications. Advanced Science, 2016. 3(7): p. 1500413.
65. Wang, Z., J. Wang, Z. Li, P. Gong, X. Liu, L. Zhang, J. Ren, H. Wang and S. Yang, Synthesis of fluorinated graphene with tunable degree of fluorination. Carbon, 2012. 50(15): p. 5403-5410.
66. Sin, Y.-Y., C.-C. Huang, C.-N. Lin, J.-K. Chih, Y.-L. Hsieh, I.-Y. Tsao, J. Li and C.-Y. Su, Ultrastrong adhesion of fluorinated graphene on a substrate: In situ electrochemical conversion to ionic-covalent bonding at the interface. Carbon, 2020. 169: p. 248-257.
67. Ye, Y., D. Zhang, J. Li, T. Liu, J. Pu, H. Zhao and L. Wang, One-step synthesis of superhydrophobic polyhedral oligomeric silsesquioxane-graphene oxide and its application in anti-corrosion and anti-wear fields. Corrosion Science, 2019. 147: p. 9-21.
68. Ye, Y., Z. Liu, W. Liu, D. Zhang, H. Zhao, L. Wang and X. Li, Superhydrophobic oligoaniline-containing electroactive silica coating as pre-process coating for corrosion protection of carbon steel. Chemical Engineering Journal, 2018. 348: p. 940-951.
69. Qian, H., D. Xu, C. Du, D. Zhang, X. Li, L. Huang, L. Deng, Y. Tu, J.M. Mol and H.A. Terryn, Dual-action smart coatings with a self-healing superhydrophobic surface and anti-corrosion properties. Journal of Materials Chemistry A, 2017. 5(5): p. 2355-2364.
70. Oliveira, C. and M. Ferreira, Ranking high-quality paint systems using EIS. Part I: intact coatings. Corrosion Science, 2003. 45(1): p. 123-138.
71. Mahdavian, M. and M. Attar, Another approach in analysis of paint coatings with EIS measurement: phase angle at high frequencies. Corrosion Science, 2006. 48(12): p. 4152-4157.
72. Wu, Y., W. Zhao, Z. Lu and L. Wang, Fluorinated graphene film for corrosion control on copper: Experimental and theoretical studies. Carbon, 2021. 179: p. 445-457.
73. Qiang, Y., H. Li and X. Lan, Self-assembling anchored film basing on two tetrazole derivatives for application to protect copper in sulfuric acid environment. Journal of Materials Science & Technology, 2020. 52: p. 63-71.
74. Zhang, F., W. Liu, C. Liu, S. Wang, H. Shi, L. Liang and K. Pi, Rational design of non-hazardous phytic acid-functionalized graphene oxide for polymer nanocomposites toward reinforcing corrosion resistance performance applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021. 617: p. 126390.
75. Sun, W., L. Wang, T. Wu, M. Wang, Z. Yang, Y. Pan and G. Liu, Inhibiting the corrosion-promotion activity of graphene. Chemistry of Materials, 2015. 27(7): p. 2367-2373.
76. Liu, S., L. Gu, H. Zhao, J. Chen and H. Yu, Corrosion resistance of graphene-reinforced waterborne epoxy coatings. Journal of Materials Science & Technology, 2016. 32(5): p. 425-431.
77. Chang, K.-C., M.-H. Hsu, H.-I. Lu, M.-C. Lai, P.-J. Liu, C.-H. Hsu, W.-F. Ji, T.-L. Chuang, Y. Wei and J.-M. Yeh, Room-temperature cured hydrophobic epoxy/graphene composites as corrosion inhibitor for cold-rolled steel. Carbon, 2014. 66: p. 144-153.
78. Zhu, X., Q. Yan, L. Cheng, H. Wu, H. Zhao and L. Wang, Self-alignment of cationic graphene oxide nanosheets for anticorrosive reinforcement of epoxy coatings. Chemical Engineering Journal, 2020. 389: p. 124435.
79. Arshad, M.U., D. Dutta, Y.Y. Sin, S.W. Hsiao, C.Y. Wu, B.K. Chang, L. Dai and C.Y. Su, Multi-functionalized fluorinated graphene composite coating for achieving durable electronics: Ultralow corrosion rate and high electrical insulating passivation. Carbon, 2022. 195: p. 141-153.
80. Khosravian, N., M. Samani, G. Loh, G.C. Chen, D. Baillargeat and B. Tay, Effects of a grain boundary loop on the thermal conductivity of graphene: A molecular dynamics study. Computational Materials Science, 2013. 79: p. 132-135.
81. Yang, D., F. Ma, Y. Sun, T. Hu and K. Xu, Influence of typical defects on thermal conductivity of graphene nanoribbons: An equilibrium molecular dynamics simulation. Applied Surface Science, 2012. 258(24): p. 9926-9931.
82. Rajasekaran, G., P. Narayanan and A. Parashar, Effect of point and line defects on mechanical and thermal properties of graphene: a review. Critical Reviews in Solid State and Materials Sciences, 2016. 41(1): p. 47-71.
83. Huang, W., Q.-X. Pei, Z. Liu and Y.-W. Zhang, Thermal conductivity of fluorinated graphene: A non-equilibrium molecular dynamics study. Chemical Physics Letters, 2012. 552: p. 97-101.
指導教授 蘇清源(Ching-Yuan Su) 審核日期 2022-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明