博碩士論文 109328014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:18.118.171.20
姓名 呂宛錘(WAN-CHUI LU)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 真空壓印於二維材料轉印製程之研究
(Research on the transfer process of vacuum imprinting on two-dimensional materials)
相關論文
★ 捲對捲乾轉印方法於製作高效能石墨烯透明導電膜之研究★ 利用氟素高分子摻雜於提升石墨烯導電膜的效能 與穩定性之研究
★ 以石墨烯混成陶瓷粉末於製作高導熱及高電阻之聚亞醯胺薄膜的研究★ 以奈米銅催化輔助控制多孔石墨烯之孔隙結構及其於超級電容之研究
★ 研究超潔淨石墨烯之場效電晶體 於提升基因感測器之效能★ 利用氟化自組裝膜輔助轉印石墨烯薄膜及其於場效電晶體特性之研究
★ 多孔石墨烯邊界態之氮改質於超級電容的效能研究★ 石墨烯場效應電晶體應用於DNA生醫感測晶片之元件整合和效能評估的研究
★ 添加氟化石墨烯於奈米高分子複合材料以增強防 腐性能★ 石墨烯功能性改質於鋰離子電池負極材料 之研究
★ 紫外光輻照於輔助轉印高品質石墨烯之研究★ 氟化石墨烯複合結構於鋰離子電池的人工固態電解質界面膜之研究
★ 超高附著力之氟化石墨烯薄膜於固態磨潤之研究★ 氟化石墨烯複合結構在鋰金屬電池中的雙功能陽極之機制探討
★ 氟化石墨烯複合材料塗層於多功能披覆之研究★ 三維結構之微孔石墨烯於超級電容器之應用與研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 石墨烯為單原子層結構,具有卓越的電學、機械熱學和化學性質,其優異之性質備受關注,然而不具能隙亦限制其於半導體領域之應用,因此開啟了其他相關的二維半導體材料研究,尤其是VI 族過渡金屬二硫化物 (TMDs) 的材料家族備受關注。然而,目前的二維材料成長無法直接應用於後段半導體製程(BEOL),於後續需再經過一轉印製程,而目前傳統之濕式轉印製程,仍遭遇到高分子與金屬離子殘留和轉印過程破裂等問題,造成薄膜品質的下降,因此提升二維材料大面積轉印的完整性和潔淨性,,仍為目前發展所需解決之關鍵問題。
本實驗使用易移除的摻雜松香(Doped-Rosin) 高分子來取代傳統濕式轉印法常用的聚甲基丙烯酸甲酯(PMMA)作為緩衝層,以改善轉印過程中高分子造成的缺陷和殘留問題;並且使用優化的蝕刻液配比來減少成長基板所殘留金屬離子。此外,為了解決常溫轉印石墨烯帶來的問題,我們設計了真空奈米壓印機,利用高真空下的可控性平壓設計,相較於大氣下平板或捲對捲(R2R)滾輪熱壓,可更精確且均勻的控制複合支撐層和二維材料薄膜的壓合。研究發現在真空環境下進行貼合,可以避免在轉印過程中產生的氣孔、水氣等,而避免造成轉印後所形成的氣/液胞,而導致後續的破裂等缺陷,此有助於延伸應用於其他二維材料。
本研究之具體成果:(1)使用摻雜松香高分子來轉印的石墨烯,其載子遷移率為1787 cm2/Vs,比傳統濕式轉印法高約2.6倍,也比使用PMMA R2R乾式轉印法高約1.3倍。(2)使用真空奈米壓印機來轉印的石墨烯載子遷移率為857 cm2/Vs,比傳統濕式轉印法高約1.3倍,也比使用R2R乾式轉印法高約1.2倍。(3)使用真空奈米壓印機來轉印的二硫化鉬表面完整性度達99 %且潔淨度也達99%,而應變和載子摻雜,相較於未經紫外光處理和退火處理也有分別降低43%和75% 的趨勢。此外,在實驗過程中發現將摻雜松香緩衝層照射紫外光後再進行退火處理,能加快摻雜松香劣化。對真空壓印乾式轉印法的二硫化鉬表面進行紫外光與退火處理與未經任何處理的比較,其表面粗糙度從0.94 nm降到0.83 nm,研究發現更有效去除高分子且不會對二硫化鉬造成缺陷的方法,本研究成果可有效改善目前二維材料於轉印中所遭遇之困境。
摘要(英) Graphene is a single atomic layer material with excellent electrical conductivity, mechanical strength, thermal conductivity, and chemical stability. Its excellent material properties have attracted much attention in various application fields However, its lack of band gap limits its application in the semiconductor field, thus opening other related two-dimensional semiconductor materials research, especially on the material family of group VI transition metal dichalcogenides (TMDs) has received much attention. However, the current 2D material growth can’t be directly applied to the back-end of line (BEOL) in semiconductor process. Therefore, a transfer process is required, from which the current traditional wet transfer process still encounters the issues of polymer and metal ions residue that degrade their electrical performance . Therefore, improving the integrity and cleanliness of large-area two-dimensional materials by a reliable transfer process is still a key problem that needs to be solved in current development.
In this experiment, the easily removable doped-rosin (Doped-Rosin) polymer was used to replace the polymethyl methacrylate (PMMA) commonly used in the traditional wet transfer method as a buffer layer to improve the defects caused by the polymer during the transfer process. As for the residual problems, the use of an optimized etchant recipe was proposed to significantly reduce the residual metal ions in the growth substrate. In addition, in order to solve the problems brought by the transfer of graphene at room temperature, we designed a vacuum nanoimprint system which utilizes the controllable flat pressing design under high vacuum, compared with the flat plate or roll-to-roll (R2R) method under the atmosphere, the hot pressing can control the pressing stress of the composite support layer and the two-dimensional material film thus to achieving a more precisely and uniformly transferring film. The study shows that laminating in a vacuum environment can avoid pores, water vapor, etc, which were normally generated during the transfer process. Also, the formation of air/liquid cells can be suppressed after the transfer, resulting in subsequent cracks and other defects, which helps It can be extended to other 2D materials.
Results of the research are as follows. (1) The carrier mobility of graphene transferred by polymer (Doped-Rosin) is 1787 cm2/Vs, which is about 2.6 times higher than the traditional wet transfer, and it also have 1.3 times higher than the PMMA dry transfer. (2) The carrier mobility of graphene transferred by vacuum nano-imprint is 857 cm2/Vs, which is about 1.3 times higher than the traditional wet transfer and it was about 1.2 times higher than the R2R dry transfer. (3) The surface integrity of MoS2 transferred by vacuum nanoimprint is 99% and the cleanliness is also 99%; also, the strain and carrier doping are 43% and 75% reduced from those without UV treatment and annealing treatment. In addition, it was found that the doped rosin buffer layer was irradiated with ultraviolet light and then annealed which could be accelerate the deterioration of the doped rosin molecular. In comparison with the MoS2 samples without any treatment, the UV light and annealing treated samples shows the decreased surface roughness from 0.94 nm to 0.83 nm. This study provide a deeper understanding and an improved transferring process of 2D materials, which is beneficial for the future application in nanoelectronics.
關鍵字(中) ★ 轉印 關鍵字(英) ★ transfer
論文目次 中文摘要 vii
Abstract ix
致謝 xi
目錄 xii
圖目錄 xv
表目錄 xix
第一章 緒論 1
第二章 文獻回顧與研究動機 6
2.1 二維材料成長方式 6
2.1.1濕式轉印方法 8
2.1.2乾式轉印方法 10
2.1.3超潔淨高分子殘留的清潔方法 15
2.2 二維材料拉曼光譜分析 19
2.2.1石墨烯(Graphene)拉曼光譜 20
2.2.2二硫化鉬(MoS2)拉曼光譜 21
第三章 研究架構跟流程 25
3.1 實驗藥品與儀器 25
3.1.1實驗藥品 25
3.1.2實驗儀器 26
3.1.3分析儀器 27
3.2 實驗架構與流程 29
3.2.1濕式蝕刻轉印法 29
3.2.2捲對捲乾式轉印法 31
3.2.3真空壓印乾式轉印法 33
3.3 轉印二維材料薄膜之表面潔淨度及完整度的定義與分析 35
3.4 霍爾量測方式 36
第四章 結果與討論 37
4.1 優化二維材料捲對捲乾式轉印之製程 37
4.1.1研究不同高分子應用於石墨烯捲對捲乾式轉印的影響 37
4.1.2比較不同溶液轉印方法對於石墨烯金屬離子殘留特性分析 39
4.1.3三種不同處理方法超潔淨石墨烯電性探討 42
4.1.4二硫化鉬多層膜轉印對於潔淨度、完整度結晶品質等特性分析 44
4.2 優化石墨烯真空乾式轉印之製程參數 46
4.2.1石墨烯真空乾式轉印冷壓壓力的參數討論與影響 46
4.2.2優化真空乾式轉印之熱壓壓力、溫度與時間的參數討論 47
4.3 三種不同轉印石墨烯方法之比較 54
4.3.1比較不同轉印方法對於石墨烯結晶品質特性分析探討 57
4.3.2比較三種不同轉印方法對於石墨烯電性的影響 61
4.4 真空熱壓乾式轉印方法應用於二硫化鉬之製程 63
4.4.1真空熱壓乾式轉印冷壓壓力的參數討論 63
4.4.2二硫化鉬轉印對於應力與摻雜的研究 65
4.5 比較不同轉印方法對於二硫化鉬電性的影響 73
第五章 結論與未來工作 76
5.1 結論 76
5.2 未來工作 77
參考文獻 78
參考文獻 1. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. 2004. 306(5696): p. 666-669.
2. Chae, S.J., et al., Synthesis of large‐area graphene layers on poly‐nickel substrate by chemical vapor deposition: wrinkle formation. 2009. 21(22): p. 2328-2333.
3. Deng, B., et al., Roll-to-roll encapsulation of metal nanowires between graphene and plastic substrate for high-performance flexible transparent electrodes. 2015. 15(6): p. 4206-4213.
4. Mayorov, A., et al., Interaction-driven spectrum reconstruction in bilayer graphene. 2011. 333(6044): p. 860-863.
5. Shin, K.-Y., J.-Y. Hong, and J.J.C.c. Jang, Flexible and transparent graphene films as acoustic actuator electrodes using inkjet printing. 2011. 47(30): p. 8527-8529.
6. Li, X., et al., Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics. 2017. 4(2): p. 021306.
7. Das, S., et al., The role of graphene and other 2D materials in solar photovoltaics. 2019. 31(1): p. 1802722.
8. Schwierz, F., J. Pezoldt, and R.J.N. Granzner, Two-dimensional materials and their prospects in transistor electronics. 2015. 7(18): p. 8261-8283.
9. Batmunkh, M., M. Bat‐Erdene, and J.G.J.A.M. Shapter, Phosphorene and phosphorene‐based materials–prospects for future applications. 2016. 28(39): p. 8586-8617.
10. Batmunkh, M., M. Bat-Erdene, and J.G. Shapter, Phosphorene and Phosphorene-Based Materials – Prospects for Future Applications. Advanced Materials, 2016. 28(39): p. 8586-8617.
11. Watson, A.J., et al., Transfer of large-scale two-dimensional semiconductors: Challenges and developments. 2021.
12. Xu, Y., et al., Liquid-phase exfoliation of graphene: an overview on exfoliation media, techniques, and challenges. 2018. 8(11): p. 942.
13. Munoz, R. and C.J.C.V.D. Gómez‐Aleixandre, Review of CVD synthesis of graphene. 2013. 19(10-11-12): p. 297-322.
14. Saeed, M., et al., Chemical vapour deposition of graphene—Synthesis, characterisation, and applications: A review. 2020. 25(17): p. 3856.
15. Yang, X., et al., Chemical vapour deposition of graphene: Layer control, the transfer process, characterisation, and related applications. 2019. 38(2): p. 149-199.
16. Li, X., et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. 2009. 324(5932): p. 1312-1314.
17. Kim, K.S., et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. 2009. 457(7230): p. 706-710.
18. Li, X., et al., Evolution of graphene growth on Ni and Cu by carbon isotope labeling. 2009. 9(12): p. 4268-4272.
19. Yu, Q., et al., Graphene segregated on Ni surfaces and transferred to insulators. 2008. 93(11): p. 113103.
20. Somani, P.R., S.P. Somani, and M.J.C.P.L. Umeno, Planer nano-graphenes from camphor by CVD. 2006. 430(1-3): p. 56-59.
21. Lee, Y.H., et al., Synthesis of large‐area MoS2 atomic layers with chemical vapor deposition. 2012. 24(17): p. 2320-2325.
22. Moon, T., C. Kim, and B.J.J.o.p.s. Park, Electrochemical performance of amorphous-silicon thin films for lithium rechargeable batteries. 2006. 155(2): p. 391-394.
23. Li, X., et al., Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics. Applied Physics Reviews, 2017. 4(2): p. 021306.
24. Cao, Z., et al., Targeted drug delivery: 2D layered double hydroxide nanoparticles: recent progress toward preclinical/clinical nanomedicine (small methods 2/2020). 2020. 4(2): p. 2070008.
25. Li, X., et al., Transfer of large-area graphene films for high-performance transparent conductive electrodes. 2009. 9(12): p. 4359-4363.
26. Kim, H.H., et al., Wetting‐Assisted Crack‐and Wrinkle‐Free Transfer of Wafer‐Scale Graphene onto Arbitrary Substrates over a Wide Range of Surface Energies. 2016. 26(13): p. 2070-2077.
27. De Fazio, D., et al., High-mobility, wet-transferred graphene grown by chemical vapor deposition. 2019. 13(8): p. 8926-8935.
28. Lin, Z., et al., Controllable growth of large–size crystalline MoS2 and resist-free transfer assisted with a Cu thin film. 2015. 5(1): p. 1-10.
29. Goniszewski, S., et al., Self-supporting graphene films and their applications. 2015. 9(6): p. 420-427.
30. Mupparapu, R., T. Bucher, and I.J.A.i.P.X. Staude, Integration of two-dimensional transition metal dichalcogenides with Mie-resonant dielectric nanostructures. 2020. 5(1): p. 1734083.
31. Hong, N., et al., Roll‐to‐Roll Dry Transfer of Large‐Scale Graphene. 2022. 34(3): p. 2106615.
32. Kang, J., et al., Efficient transfer of large-area graphene films onto rigid substrates by hot pressing. 2012. 6(6): p. 5360-5365.
33. Bae, S., et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. 2010. 5(8): p. 574-578.
34. Jang, B., et al., Damage mitigation in roll-to-roll transfer of CVD-graphene to flexible substrates. 2017. 4(2): p. 024002.
35. Shim, J., et al., Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. 2018. 362(6415): p. 665-670.
36. Kim, J., et al., Layer-resolved graphene transfer via engineered strain layers. 2013. 342(6160): p. 833-836.
37. Lee, J.-H., et al., Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. 2014. 344(6181): p. 286-289.
38. Zhang, Z., et al., Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. 2017. 8(1): p. 1-9.
39. JunáKim, B., et al., Design of softened polystyrene for crack-and contamination-free large-area graphene transfer. 2018. 10(46): p. 21865-21870.
40. Kang, J., et al., Graphene transfer: key for applications. 2012. 4(18): p. 5527-5537.
41. Yang, S.Y., et al., Metal‐etching‐free direct delamination and transfer of single‐layer graphene with a high degree of freedom. 2015. 11(2): p. 175-181.
42. Zhang, Z., et al., Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nature Communications, 2017. 8(1): p. 14560.
43. Wu, J.-B., et al., Raman spectroscopy of graphene-based materials and its applications in related devices. 2018. 47(5): p. 1822-1873.
44. Suhail, A., et al., Reduction of polymer residue on wet–transferred CVD graphene surface by deep UV exposure. 2017. 110(18): p. 183103.
45. Sun, H., et al., High quality graphene films with a clean surface prepared by an UV/ozone assisted transfer process. 2017. 5(8): p. 1880-1884.
46. Kim, J.H., et al., Facile Dry Surface Cleaning of Graphene by UV Treatment. 2018. 72(9): p. 1045-1051.
47. Wang, Q., et al., Investigating the nano-tribological properties of chemical vapor deposition-grown single layer graphene on SiO 2 substrates annealed in ambient air. 2015. 5(13): p. 10058-10064.
48. Wang, X., et al., Direct observation of poly (methyl methacrylate) removal from a graphene surface. 2017. 29(5): p. 2033-2039.
49. Fragala, M., et al., Ion beam assisted unzipping of PMMA. 1998. 141(1-4): p. 169-173.
50. Zhuang, B., et al., Ways to eliminate PMMA residues on graphene——superclean graphene. 2021. 173: p. 609-636.
51. Jain, A., et al., Minimizing residues and strain in 2D materials transferred from PDMS. 2018. 29(26): p. 265203.
52. Jia, H., et al., Large-scale arrays of single-and few-layer MoS 2 nanomechanical resonators. 2016. 8(20): p. 10677-10685.
53. Li, H., et al., Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr. 2015. 5(1): p. 1-14.
54. Gurarslan, A., et al., Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates. 2014. 8(11): p. 11522-11528.
55. Ma, D., et al., A universal etching-free transfer of MoS2 films for applications in photodetectors. 2015. 8(11): p. 3662-3672.
56. Phan, H.D., et al., Ultraclean and Direct Transfer of a Wafer‐Scale MoS2 Thin Film onto a Plastic Substrate. 2017. 29(7): p. 1603928.
57. Hong, M., et al., Decoupling the Interaction between Wet‐Transferred MoS2 and Graphite Substrate by an Interfacial Water Layer. 2018. 5(21): p. 1800641.
58. Chiu, M.-H., et al., Spectroscopic signatures for interlayer coupling in MoS2–WSe2 van der Waals stacking. 2014. 8(9): p. 9649-9656.
59. Mignuzzi, S., et al., Effect of disorder on Raman scattering of single-layer Mo S 2. 2015. 91(19): p. 195411.
60. Pimenta, M.A., et al., Comparative study of Raman spectroscopy in graphene and MoS2-type transition metal dichalcogenides. 2015. 48(1): p. 41-47.
61. Michail, A., et al., Optical detection of strain and doping inhomogeneities in single layer MoS2. 2016. 108(17): p. 173102.
62. Chae, W.H., et al., Substrate-induced strain and charge doping in CVD-grown monolayer MoS2. 2017. 111(14): p. 143106.
63. Lee, Y.-R., et al., Study of the Substrate-Induced Strain of As-Grown Graphene on Cu (100) Using Temperature-Dependent Raman Spectroscopy: Estimating the Mode Grüneisen Parameter with Temperature. 2017. 121(49): p. 27427-27436.
64. Lee, T., et al., Spatially resolved Raman spectroscopy of defects, strains, and strain fluctuations in domain structures of monolayer graphene. 2017. 7(1): p. 1-8.
65. Cong, X., et al., Application of Raman spectroscopy to probe fundamental properties of two-dimensional materials. 2020. 4(1): p. 1-12.
66. Bendiab, N., et al., Unravelling external perturbation effects on the optical phonon response of graphene. 2018. 49(1): p. 130-145.
67. Zhang, X., et al., Review on the Raman spectroscopy of different types of layered materials. 2016. 8(12): p. 6435-6450.
68. Saito, R., et al., Raman spectroscopy of transition metal dichalcogenides. 2016. 28(35): p. 353002.
69. Bissett, M.A., M. Tsuji, and H.J.P.C.C.P. Ago, Strain engineering the properties of graphene and other two-dimensional crystals. 2014. 16(23): p. 11124-11138.
70. Pető, J., et al., Spontaneous doping of the basal plane of MoS2 single layers through oxygen substitution under ambient conditions. 2018. 10(12): p. 1246-1251.
71. Iqbal, M.W., et al., A review on Raman finger prints of doping and strain effect in TMDCs. 2020. 219: p. 111152.
72. Rao, R., et al., Spectroscopic evaluation of charge-transfer doping and strain in graphene/MoS 2 heterostructures. 2019. 99(19): p. 195401.
73. 謝子喬, 紫外光輻照於輔助轉印高品質石墨烯之研究, in 能源工程研究所. 2021, 中央大學.
74. Quellmalz, A., et al., Large-area integration of two-dimensional materials and their heterostructures by wafer bonding. Nature Communications, 2021. 12(1): p. 917.
75. Lock, E.H., et al., High-Quality Uniform Dry Transfer of Graphene to Polymers. Nano Letters, 2012. 12(1): p. 102-107.
76. Kang, K., et al., Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature, 2017. 550(7675): p. 229-233.
77. Bae, S., et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 2010. 5(8): p. 574-578.
78. Choi, T., et al., Roll-to-roll continuous patterning and transfer of graphene via dispersive adhesion. Nanoscale, 2015. 7(16): p. 7138-7142.
79. Shivayogimath, A., et al., Do-It-Yourself Transfer of Large-Area Graphene Using an Office Laminator and Water. Chemistry of Materials, 2019. 31(7): p. 2328-2336.
指導教授 蘇清源 審核日期 2022-9-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明