博碩士論文 109329010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:3.145.186.67
姓名 許家偉(Chia-Wei Hsu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 高效電化學二氧化碳還原觸媒及其應用於H型反應槽及流通槽之最佳化研究
(The Optimization of Highly Effective Carbon Dioxide Reduction Reaction Catalysts Applied in H-cells and Flow Cells)
相關論文
★ 高效能直接甲醇燃料電池陽極觸媒之製備、改質與鑑定研究★ 金-白金陰極催化劑應用於氧氣還原反應之製備與鑑定:金合金化以及氧化鈰添加之提升效應
★ 利用熱處理改質引發表面偏析現象以增進鉑釕觸媒之甲醇氧化反應活性★ 藉添加鈀鎳與鈀鈷合金觸媒提升氮化鋰的氫化性質
★ 鉑釕觸媒應用於乙醇氧化反應之結構與活性關係研究:錫的添加和氧化處理之提升效應★ 硼氫化鋰脫氫性質之研究:以添加鈀氫氧化鎳觸媒提升其脫氫反應
★ 表面活性劑對硒化鎘及硒化鋅鎘奈米合金在高溫有機金屬製程中的效應★ 鈀銅觸媒應用於鹼性溶液中之乙醇氧化反應其結構與活性關係研究
★ 鈀鈷添加物對於硼氫化鋰及鋰硼氮氫四元化合物脫氫性質之提升效應★ 成長溫度及配位體比例對硒化鋅鎘量子點光學性質的效應
★ 製備、改質及鑑定高效能鈀鈷觸媒應用於陰極氧還原反應★ 金屬(鈰、鈷、錫)氯化物和氧化物的添加對於硼氫化鋰脫氫性質之提升效應
★ 界面活性劑比例及沉澱現象對硒化鎘量子點光學性質的效應★ 雙元鉑基合金奈米顆粒及奈米棒之製備及其應用於氧氣還原反應
★ 錳的添加對於鉑鈷觸媒氧氣還原活性提升效應★ 鈀金鎳觸媒在鹼性乙醇氧化環境下結構與活性的關係
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-31以後開放)
摘要(中) 在過去的一個世紀裡,大氣中的二氧化碳 (carbon dioxide, CO2) 排放量急劇增加。 CO2 還原反應 (CO2 reduction reaction, CO2RR) 是減少全球碳足跡最有希望的解決方案之一。具有高選擇性 (selectivity) 和活性的催化劑已在H型反應槽(H-cells)中得到廣泛研究。然而CO2RR在H-cells 的應用因其產量低,電流密度通常小於10 mA/cm2,限制其商業化應用。
因此,本研究將銅、氧化銦 (Cu-In2O3) 觸媒塗佈於H-cells和流通槽(flow cells)中的玻碳電極 (glassy carbon electrode, GCE)以及氣體擴散電極 (gas diffusion electrode, GDE)上,並研究其CO2 還原成一氧化碳 (carbon monoxide, CO) 的選擇性以及電流密度。在H-cells 的測試中, GCE 和 GDE 上的觸媒在 -0.7 V (vs. RHE) 下有著96和 92 % 的高CO法拉第效率 (faradaic efficiency, FE),其電流密度分別為 3 和 6 mA/cm2。此外,在液體和氣體進料的flow cells中,CO FE 分別為 89和 86 %,具有 30 和 90 mA/cm2 的高電流密度,遠高於 H-cells 5 倍和 15 倍的電流密度。因H-cell的設計改善了質量傳輸 (mass transfer) 問題並降低了電極之間的電阻, 使其觸媒效能有著極大的提升,本研究提供了一種有效的方式,可將實驗室規模的 CO2RR 朝向工業應用發展。
摘要(英) The carbon dioxide (CO2) emission in the atmosphere has increased dramatically in the past century. The CO2 reduction reaction (CO2RR) is one of the most promising solutions to reduce the global carbon footprint. The catalysts which have high selectivity and activity have been widely studied in H-cells. However, the application of H-cells is still far from the commercialization of CO2RR because of its low productivity (< 10 mA/cm2).
In this study, a comparative study of Cu-In2O3 catalysts immobilized onto glassy carbon electrode (GCE), gas diffusion electrode (GDE) in H-cells and flow cells is conducted to selectively reduce CO2 to carbon monoxide (CO). In the setup of H cells, catalysts on GCE and GDE exhibit a high CO faradaic efficiency (FE) of 96 and 92 % with a current density of 3 and 6 mA/cm2, respectively, at -0.7 V vs. RHE. Furthermore, in liquid and gas feed flow cells configurations, the CO FE is 89 and 86 % with an extraordinarily high current density of 30 and 90 mA/cm2, which increase by the factor of 5 and 15 compared with that in H-cells, respectively. These outstanding catalyst activities have been achieved through the flow cell design that overcomes the mass transfer issues and reduces the resistance between the electrodes. This study provides an effective strategy to move CO2RR in lab scale towards industrial application.
關鍵字(中) ★ 銅
★ 氧化銦
★ 二氧化碳還原反應
★ 法拉第效率
★ 玻碳電極
★ 氣體擴散電極
★ 質量傳輸
★ H型反應槽
★ 流通槽
關鍵字(英) ★ Cu
★ In2O3
★ CO2 reduction reaction
★ faradaic efficiency
★ glassy carbon electrode
★ gas diffusion electrode
★ mass transfer
★ H-cells
★ flow cells
論文目次 摘要 i
Abstract ii
致謝 iii
Table of Contents v
List of Figures vii
List of Tables ix
Chapter 1 Introduction 1
1.1 Mechanism of CO2RR 3
1.2 The electrodes for H-cells 6
1.3 Flow cell reactors 9
1.4 Motivation and Approach 12
Chapter 2 Experimental Section 13
2.1 Materials 13
2.2 Preparation of Catalysts 14
2.3 Physical Characterizations of Catalyst 15
2.4 Flow cell design 16
2.5 CO2RR measurement 18
2.5.1 H-cell measurement 18
2.5.2 Flow-cell measurement 20
2.5.3 Gas chromatographic system 20
2.5.4 Standard preparation 21
Chapter 3 Results and Discussion 22
3.1 Catalysts characterization 22
3.2 The optimization of CO2RR in H-cell 26
3.2.1 The effect of carbon papers 26
3.2.2 CO2RR performance in H-cell 29
3.2.3 Summary 32
3.3 Flow cell CO2RR performance 33
3.3.1 The cathode flow-field plate 33
3.3.2 CO2RR performance in the flow cell 33
3.3.3 Summary 40
Chapter 4 Conclusions 41
References 42
參考文獻 [1] Albo, J.; Irabien, A., Cu2O-loaded gas diffusion electrodes for the continuous electrochemical reduction of CO2 to methanol. J. Catal. 2016, 343, 232-239.
[2] Singh, S.; Noori, M. T.; Verma, N., Efficient bio-electroreduction of CO2 to formate on a iron phthalocyanine-dispersed CDC in microbial electrolysis system. Electrochim. Acta 2020, 338, 135887.
[3] Varela, A. S., The importance of pH in controlling the selectivity of the electrochemical CO2 reduction. Curr. Opin. Green Sustain. Chem. 2020, 26, 100371.
[4] Zhu, D. D.; Liu, J. L.; Qiao, S. Z., Recent Advances in Inorganic Heterogeneous Electrocatalysts for Reduction of Carbon Dioxide. Adv. Mater. 2016, 28 (18), 3423-3452.
[5] Sun, Z.; Ma, T.; Tao, H.; Fan, Q.; Han, B., Fundamentals and Challenges of Electrochemical CO2 Reduction Using Two-Dimensional Materials. Chem. 2017, 3 (4), 560-587.
[6] Luo, W.; Xie, W.; Mutschler, R.; Oveisi, E.; De Gregorio, G. L.; Buonsanti, R.; Züttel, A., Selective and Stable Electroreduction of CO2 to CO at the Copper/Indium Interface. ACS Catal. 2018, 8 (7), 6571-6581.
[7] Zhao, Y.; Wang, C.; Wallace, G. G., Tin nanoparticles decorated copper oxide nanowires for selective electrochemical reduction of aqueous CO2 to CO. J. Mater. Chem. A 2016, 4 (27), 10710-10718.
[8] Rasul, S.; Anjum, D. H.; Jedidi, A.; Minenkov, Y.; Cavallo, L.; Takanabe, K., A Highly Selective Copper–Indium Bimetallic Electrocatalyst for the Electrochemical Reduction of Aqueous CO2 to CO. Angew. Chem., Int. Ed. 2015, 54 (7), 2146-2150.
[9] Endrődi, B.; Bencsik, G.; Darvas, F.; Jones, R.; Rajeshwar, K.; Janáky, C., Continuous-flow electroreduction of carbon dioxide. Prog. Energy Combust. Sci. 2017, 62, 133-154.
[10] Liang, S.; Altaf, N.; Huang, L.; Gao, Y.; Wang, Q., Electrolytic cell design for electrochemical CO2 reduction. J. CO2 Util. 2020, 35, 90-105.
[11] Garza, A. J.; Bell, A. T.; Head-Gordon, M., Mechanism of CO2 Reduction at Copper Surfaces: Pathways to C2 Products. ACS Catal. 2018, 8 (2), 1490-1499.
[12] Whipple, D. T.; Kenis, P. J. A., Prospects of CO2 Utilization via Direct Heterogeneous Electrochemical Reduction. J. Phys. Chem. Lett. 2010, 1 (24), 3451-3458.
[13] Weekes, D. M.; Salvatore, D. A.; Reyes, A.; Huang, A.; Berlinguette, C. P., Electrolytic CO2 Reduction in a Flow Cell. Acc. Chem. Res. 2018, 51 (4), 910-918.
[14] Newman, J.; Hoertz, P. G.; Bonino, C. A.; Trainham, J. A., Review: An Economic Perspective on Liquid Solar Fuels. J. Electrochem. Soc. 2012, 159 (10), A1722-A1729.
[15] Feaster, J. T.; Shi, C.; Cave, E. R.; Hatsukade, T.; Abram, D. N.; Kuhl, K. P.; Hahn, C.; Nørskov, J. K.; Jaramillo, T. F., Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes. ACS Catal. 2017, 7 (7), 4822-4827.
[16] Yang, H.; Wu, Y.; Lin, Q.; Fan, L.; Chai, X.; Zhang, Q.; Liu, J.; He, C.; Lin, Z., Composition Tailoring via N and S Co-doping and Structure Tuning by Constructing Hierarchical Pores: Metal-Free Catalysts for High-Performance Electrochemical Reduction of CO2. Angew. Chem., Int. Ed. 2018, 57 (47), 15476-15480.
[17] Möller, T.; Ju, W.; Bagger, A.; Wang, X.; Luo, F.; Ngo Thanh, T.; Varela, A. S.; Rossmeisl, J.; Strasser, P., Efficient CO2 to CO electrolysis on solid Ni–N–C catalysts at industrial current densities. Energy Environ. Sci. 2019, 12 (2), 640-647.
[18] Quan, Y.; Zhu, J.; Zheng, G., Electrocatalytic Reactions for Converting CO2 to Value-Added Products. Small 2021, 1 (10), 2100043.
[19] Won, D. H.; Choi, C. H.; Chung, J.; Chung, M. W.; Kim, E.-H.; Woo, S. I., Rational Design of a Hierarchical Tin Dendrite Electrode for Efficient Electrochemical Reduction of CO2. ChemSusChem 2015, 8 (18), 3092-3098.
[20] Zhang, W.; Hu, Y.; Ma, L.; Zhu, G.; Wang, Y.; Xue, X.; Chen, R.; Yang, S.; Jin, Z., Progress and Perspective of Electrocatalytic CO2 Reduction for Renewable Carbonaceous Fuels and Chemicals. Adv. Sci. Lett. 2018, 5 (1), 1700275.
[21] Rosen Brian, A.; Salehi-Khojin, A.; Thorson Michael, R.; Zhu, W.; Whipple Devin, T.; Kenis Paul, J. A.; Masel Richard, I., Ionic Liquid–Mediated Selective Conversion of CO2 to CO at Low Overpotentials. Science 2011, 334 (6056), 643-644.
[22] Fan, L.; Xia, C.; Yang, F.; Wang, J.; Wang, H.; Lu, Y., Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2 products. Sci. Adv. 2020, 6 (8), eaay3111.
[23] Zhao, C.; Wang, J., Electrochemical reduction of CO2 to formate in aqueous solution using electro-deposited Sn catalysts. Chem. Eng. J. 2016, 293, 161-170.
[24] Chen, Y.; Li, C. W.; Kanan, M. W., Aqueous CO2 Reduction at Very Low Overpotential on Oxide-Derived Au Nanoparticles. J. Am. Chem. Soc. 2012, 134 (49), 19969-19972.
[25] Qiao, J.; Liu, Y.; Hong, F.; Zhang, J., A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 2014, 43 (2), 631-675.
[26] Larrazábal, G. O.; Martín, A. J.; Mitchell, S.; Hauert, R.; Pérez-Ramírez, J., Enhanced Reduction of CO2 to CO over Cu–In Electrocatalysts: Catalyst Evolution Is the Key. ACS Catal. 2016, 6 (9), 6265-6274.
[27] He, J.; Dettelbach, K. E.; Salvatore, D. A.; Li, T.; Berlinguette, C. P., High-Throughput Synthesis of Mixed-Metal Electrocatalysts for CO2 Reduction. Angew. Chem., Int. Ed. 2017, 56 (22), 6068-6072.
[28] Hwang, D. S.; Park, C. H.; Yi, S. C.; Lee, Y. M., Optimal catalyst layer structure of polymer electrolyte membrane fuel cell. Int. J. Hydrog. Energy 2011, 36 (16), 9876-9885.
[29] Salvatore, D. A.; Weekes, D. M.; He, J.; Dettelbach, K. E.; Li, Y. C.; Mallouk, T. E.; Berlinguette, C. P., Electrolysis of Gaseous CO2 to CO in a Flow Cell with a Bipolar Membrane. ACS Energy Lett. 2018, 3 (1), 149-154.
[30] Alvarez-Guerra, M.; Quintanilla, S.; Irabien, A., Conversion of carbon dioxide into formate using a continuous electrochemical reduction process in a lead cathode. Chem. Eng. J. 2012, 207-208, 278-284.
[31] Del Castillo, A.; Alvarez-Guerra, M.; Irabien, A., Continuous electroreduction of CO2 to formate using Sn gas diffusion electrodes. AIChE J. 2014, 60 (10), 3557-3564.
[32] Yang, K.; Kas, R.; Smith, W. A.; Burdyny, T., Role of the Carbon-Based Gas Diffusion Layer on Flooding in a Gas Diffusion Electrode Cell for Electrochemical CO2 Reduction. ACS Energy Lett. 2021, 6 (1), 33-40.
[33] Lees, E. W.; Goldman, M.; Fink, A. G.; Dvorak, D. J.; Salvatore, D. A.; Zhang, Z.; Loo, N. W. X.; Berlinguette, C. P., Electrodes Designed for Converting Bicarbonate into CO. ACS Energy Lett. 2020, 5 (7), 2165-2173.
[34] Jhong, H.-R. M.; Brushett, F. R.; Kenis, P. J. A., The Effects of Catalyst Layer Deposition Methodology on Electrode Performance. Adv. Energy Mater. 2013, 3 (5), 589-599.
[35] Zhang, J.; Qiao, M.; Li, Y.; Shao, Q.; Huang, X., Highly Active and Selective Electrocatalytic CO2 Conversion Enabled by Core/Shell Ag/(Amorphous-Sn(IV)) Nanostructures with Tunable Shell Thickness. ACS Appl. Mater. Interfaces 2019, 11 (43), 39722-39727.
[36] Bitar, Z.; Fecant, A.; Trela-Baudot, E.; Chardon-Noblat, S.; Pasquier, D., Electrocatalytic reduction of carbon dioxide on indium coated gas diffusion electrodes—Comparison with indium foil. Appl. Catal. B 2016, 189, 172-180.
[37] Qi, Z.; Hawks, S. A.; Horwood, C.; Biener, J.; Biener, M. M., Mitigating mass transport limitations: hierarchical nanoporous gold flow-through electrodes for electrochemical CO2 reduction. Adv. Mater. 2022, 3 (1), 381-388.
[38] Vasileff, A.; Xu, C.; Jiao, Y.; Zheng, Y.; Qiao, S.-Z., Surface and Interface Engineering in Copper-Based Bimetallic Materials for Selective CO2 Electroreduction. Chem. 2018, 4 (8), 1809-1831.
[39] Hori, Y.; Konishi, H.; Futamura, T.; Murata, A.; Koga, O.; Sakurai, H.; Oguma, K., “Deactivation of copper electrode” in electrochemical reduction of CO2. Electrochim. Acta 2005, 50 (27), 5354-5369.
[40] Wuttig, A.; Surendranath, Y., Impurity Ion Complexation Enhances Carbon Dioxide Reduction Catalysis. ACS Catal. 2015, 5 (7), 4479-4484.
[41] Vennekoetter, J.-B.; Sengpiel, R.; Wessling, M., Beyond the catalyst: How electrode and reactor design determine the product spectrum during electrochemical CO2 reduction. Chem. Eng. J. 2019, 364, 89-101.
[42] Duan, Q.; Wang, H.; Benziger, J., Transport of liquid water through Nafion membranes. J. Membr. Sci. 2012, 392-393, 88-94.
[43] Jiang, K.; Siahrostami, S.; Zheng, T.; Hu, Y.; Hwang, S.; Stavitski, E.; Peng, Y.; Dynes, J.; Gangisetty, M.; Su, D.; Attenkofer, K.; Wang, H., Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 2018, 11 (4), 893-903.
[44] Tornow, C. E.; Thorson, M. R.; Ma, S.; Gewirth, A. A.; Kenis, P. J. A., Nitrogen-Based Catalysts for the Electrochemical Reduction of CO2 to CO. J. Am. Chem. Soc. 2012, 134 (48), 19520-19523.
[45] Abdinejad, M.; Dao, C.; Zhang, X.-A.; Kraatz, H. B., Enhanced electrocatalytic activity of iron amino porphyrins using a flow cell for reduction of CO2 to CO. J. Energy Chem. 2021, 58, 162-169.
[46] Luo, W.; Zhang, J.; Li, M.; Züttel, A., Boosting CO Production in Electrocatalytic CO2 Reduction on Highly Porous Zn Catalysts. ACS Catal. 2019, 9 (5), 3783-3791.
[47] Vedharathinam, V.; Qi, Z.; Horwood, C.; Bourcier, B.; Stadermann, M.; Biener, J.; Biener, M., Using a 3D Porous Flow-Through Electrode Geometry for High-Rate Electrochemical Reduction of CO2 to CO in Ionic Liquid. ACS Catal. 2019, 9 (12), 10605-10611.
[48] Liu, J.; Peng, L.; Zhou, Y.; Lv, L.; Fu, J.; Lin, J.; Guay, D.; Qiao, J., Metal–Organic-Frameworks-Derived Cu/Cu2O Catalyst with Ultrahigh Current Density for Continuous-Flow CO2 Electroreduction. ACS Sustain. Chem. Eng. 2019, 7 (18), 15739-15746.
[49] Zhang, J.; Luo, W.; Züttel, A., Self-supported copper-based gas diffusion electrodes for CO2 electrochemical reduction. J. Mater. Chem. A 2019, 7 (46), 26285-26292.
[50] Lan, Y.; Ma, S.; Lu, J.; Kenis, P., Investigation of a Cu(core)/CuO(shell) Catalyst for Electrochemical Reduction of CO2 in Aqueous Soultion. Int. J. Electrochem. Sci. 2014, 9, 7300-7308.
指導教授 王冠文(Kuan-Wen Wang) 審核日期 2022-6-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明