博碩士論文 109329013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.128.79.215
姓名 邱敬庭(Ching-Ting Chiu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 石墨烯/高熵奈米陶瓷觸媒之製備暨有機汙染物降解效率探討
(Preparation of graphene/high-entropy nano ceramic catalyst and degradation of organic pollutant)
相關論文
★ Development of periodic nanostructure substrates for the applications of SERS and water-splitting★ 高熵氧化物(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2O)應用於鋰離子電池負極材料之研究
★ 利用金屬鹽類雷射加工技術於碳材料上 製造高熵奈米粒子進行催化反應之應用★ 高熵氧化物電極於類海水催化應用
★ 利用噴霧造粒製備中熵氧化物應用於鋰離子電池負極材料之研究★ 回收廢棄電路板之材料於生醫檢測與儲能元件 之應用
★ 可逆高熵氧化物陽極應用於 鋰離子全電池之研究★ 開發液漩式重力分選技術用於廢棄PCB成型板粉塵回收資源化
★ 高熵硒化物觸媒應用於電芬頓反應降解有機污染物之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-10以後開放)
摘要(中) 高熵材料相關研究開展至今已逾二十年,過往的研究都集中探討高熵合金於機械強度、延展性、熱穩定性等機械性質之強化。近年來,綠能材料的需求越發增加,目光逐漸放在高熵材料於功能性材料的研究上,並也證實高熵材料由於其高熵效應以及多元素之間的協同效應,能有效地增加各個催化反應的活性以及穩定性,為高熵材料的應用方向開創出不同的方向。芬頓反應是一種常見於工業污染處理技術,但該反應中所需的過氧化氫具有高度的風險性,並且反應副產物為大量的鐵淤泥沉積物,大大增加了汙染物處理的成本。為了解決這個問題,本文將以快速煆燒裂解法將AlCrCuFeNi混合硝酸金屬鹽前驅物還原成(AlCrCuFeNi)O高熵陶瓷,並將高熵陶瓷與石墨烯組合成一複合式奈米觸媒,透過此奈米觸媒於電芬頓法進行降解汙染物的研究,並評估功能性高熵材料分解汙染物的潛力。石墨烯/(AlCrCuFeNi)O高熵陶瓷製成之陰極增強了電芬頓過程中H2O2的生成,(AlCrCuFeNi)O高熵陶瓷提高了電催化活性和穩定性。由於高熵陶瓷的高電芬頓效率,石墨烯/(AlCrCuFeNi)O高熵陶瓷陰極相比於石墨烯以及(AlCrCuFeNi)O高熵陶瓷,前者在反應的90分鐘內能有效地去除99%的甲基橙,此外,其電芬頓效果在經過四次的重複性試驗後,仍能保持約80%的效能。最後,在此研究中,已成功比較有無添加捕捉劑之電芬頓效果,驗證了電芬頓法確實是由氫氧自由基分解汙染物,而超氧自由基是作為過氧化氫生成的活性中間體。
摘要(英) Research on high-entropy materials has been conducted for more than 20 years. In the past, research has focused on the enhancement of mechanical properties such as mechanical strength, ductility, and thermal stability of high-entropy alloys. In recent years, the demand for green energy materials has been increasing, and the attention has been focused on the research of high entropy materials for functional materials. In the meantime, related research has also confirmed that high-entropy materials can effectively increase the activity and stability of various catalytic reactions due to their high-entropy effect and the synergistic effect between multiple elements, opening up different directions for the application of high-entropy materials. The Fenton reaction is a commonly used technique for the remediation of industrial pollution, but hydrogen peroxide required in this reaction is highly hazardous and the enormous volume of iron sludge byproducts increases significantly the cost of pollution remediation. To address this issue, this study examined the efficacy of the electro-Fenton reaction in degrading pollutants utilizing a complex of graphene and a high-entropy ceramic catalyst, and evaluated the potential of functionalized high-entropy materials for the decomposition of pollutants. The degradation of organic water contaminants was investigated utilizing a novel composite of graphene and (AlCrCuFeNi)O high-entropy ceramics, to increase the generation of H2O2 in the electro-Fenton process. Rapid calcination pyrolysis produced (AlCrCuFeNi)O high-entropy ceramics to enhance both the electrocatalytic activity and the stability. Because of the high electro-Fenton efficiency of the high-entropy ceramics, the graphene/(AlCrCuFeNi)O HEC cathode effectively removed 99 % methyl orange within 90 min of operation.
關鍵字(中) ★ 電觸媒
★ H2O2生成
★ 高熵陶瓷
★ 電芬頓法
★ 汙水降解
關鍵字(英) ★ Electrocatalyst
★ H2O2 production
★ High-entropy ceramics
★ Electro-Fenton reaction
★ Water pollution degradation
論文目次 中文摘要 I
英文摘要 III
誌謝 V
總目錄 VII
圖目錄 IX
表目錄 XII
第一章 前言 1
第二章 理論基礎與文獻回顧 5
2.1 高熵材料基本特性 5
2.1.1 高熵四大效應 7
2.1.2 快速煆燒裂解法 11
2.2 石墨烯基本特性 17
2.3高級氧化法 18
2.3.1 電芬頓法 21
2.3.2 活性氧物質 23
第三章 實驗步驟 28
3.1 (AlCrCuFeNi)O 高熵陶瓷製備 28
3.2 石墨烯/(AlCrCuFeNi)O 高熵陶瓷製備 29
3.3 電芬頓法電極製備 29
3.4 電芬頓法降解偶氮染料 30
3.4.1 電芬頓法實驗 30
3.4.2 活性氧物質測量 32
3.5 分析儀器及設備 32
第四章 結果與討論 34
4.1 (AlCrCuFeNi)O HEC & G@HEC之材料分析 34
4.1.1 結晶及微結構分析 34
4.1.2 微觀形貌及元素分布分析 37
4.1.3 元素價數分析 38
4.1.4 原子位置結構分析 41
4.2 (AlCrCuFeNi)O HEC & G@HEC於電芬頓法降解汙染物之成效 45
4.2.1 石墨烯、(AlCrCuFeNi)O HEC及G@HEC降解成效 45
4.2.2 不同環境參數於電芬頓法之影響 48
4.2.3 活性氧物質分析 50
第五章 結論 52
第六章 未來研究方向 54
參考文獻 56
參考文獻 1. Gupta, V.K., et al., Chemical treatment technologies for waste-water recycling—an overview. RSC Advances, 2012. 2(16): p. 6380-6388.
2. 中華民國內政部營建署公開資訊. Available from: https://www.cpami.gov.tw/filesys/file/EMMA/109final.pdf.
3. 廢(污)水處理廠節能規劃與改善以工研院中興院區為例. Available from: https://reurl.cc/9G8XEO.
4. Martínez-Huitle, C.A. and L.S. Andrade, Electrocatalysis in wastewater treatment: recent mechanism advances. Quimica Nova, 2011. 34(5): p. 850-858.
5. Panizza, M. and G. Cerisola, Electro-Fenton degradation of synthetic dyes. Water research, 2009. 43(2): p. 339-344.
6. Xie, P., et al., Highly efficient decomposition of ammonia using high-entropy alloy catalysts. Nature communications, 2019. 10(1): p. 1-12.
7. Miracle, D.B. and O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Materialia, 2017. 122: p. 448-511.
8. Jien-Wei, Y., Recent progress in high entropy alloys. Ann. Chim. Sci. Mat, 2006. 31(6): p. 633-648.
9. Cantor, B., et al., Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A, 2004. 375: p. 213-218.
10. Yeh, J.W., et al., Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced engineering materials, 2004. 6(5): p. 299-303.
11. George, E.P., D. Raabe, and R.O. Ritchie, High-entropy alloys. Nature reviews materials, 2019. 4(8): p. 515-534.
12. Zhang, W., P.K. Liaw, and Y. Zhang, Science and technology in high-entropy alloys. Science China Materials, 2018. 61(1): p. 2-22.
13. Rodriguez, J., Physical and chemical properties of bimetallic surfaces. Surface Science Reports, 1996. 24(7-8): p. 223-287.
14. Ding, Z.-B., et al., Theoretical studies of the work functions of Pd-based bimetallic surfaces. The Journal of Chemical Physics, 2015. 142(21): p. 214706.
15. Yang, C., et al., Effect of composition and distribution on structural and surface electronic properties of palladium–gold bimetallic nanoparticles: a density functional theory investigation. Theoretical Chemistry Accounts, 2015. 134(10): p. 1-8.
16. Nørskov, J., Theory nof chemisorption and heterogeneous catalysis. Physica B+ C, 1984. 127(1-3): p. 193-202.
17. Hammer, B. and J.K. Nørskov, Electronic factors determining the reactivity of metal surfaces. Surface science, 1995. 343(3): p. 211-220.
18. Xin, H., et al., Effects of d-band shape on the surface reactivity of transition-metal alloys. Physical Review B, 2014. 89(11): p. 115114.
19. Long, R., et al., Isolation of Cu atoms in Pd lattice: forming highly selective sites for photocatalytic conversion of CO2 to CH4. Journal of the American Chemical Society, 2017. 139(12): p. 4486-4492.
20. Wang, Z., et al., The cooperation effect in the Au–Pd/LDH for promoting photocatalytic selective oxidation of benzyl alcohol. Catalysis Science & Technology, 2018. 8(1): p. 268-275.
21. Li, Z., et al., Higher gold atom efficiency over Au-Pd/TS-1 alloy catalysts for the direct propylene epoxidation with H2 and O2. Applied Surface Science, 2019. 497: p. 143749.
22. Stamenkovic, V.R., et al., Improved oxygen reduction activity on Pt3Ni (111) via increased surface site availability. science, 2007. 315(5811): p. 493-497.
23. Yao, Y., et al., Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts. Science advances, 2020. 6(11): p. eaaz0510.
24. Xin, Y., et al., High-entropy alloys as a platform for catalysis: progress, challenges, and opportunities. ACS Catalysis, 2020. 10(19): p. 11280-11306.
25. Zhang, Y., et al., Microstructures and properties of high-entropy alloys. Progress in materials science, 2014. 61: p. 1-93.
26. Yeh, J.-W., Alloy design strategies and future trends in high-entropy alloys. Jom, 2013. 65(12): p. 1759-1771.
27. Wang, R., et al., Effect of lattice distortion on the diffusion behavior of high-entropy alloys. Journal of Alloys and Compounds, 2020. 825: p. 154099.
28. Tong, C.-J., et al., Microstructure characterization of Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions A, 2005. 36(4): p. 881-893.
29. Tsai, M.-H., J.-W. Yeh, and J.-Y. Gan, Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon. Thin Solid Films, 2008. 516(16): p. 5527-5530.
30. Tsai, K.-Y., M.-H. Tsai, and J.-W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Materialia, 2013. 61(13): p. 4887-4897.
31. Chang, H.-W., et al., Influence of substrate bias, deposition temperature and post-deposition annealing on the structure and properties of multi-principal-component(AlCrMoSiTi)N coatings. Surface and Coatings Technology, 2008. 202(14): p. 3360-3366.
32. Rogachev, A., et al., Structure and properties of equiatomic CoCrFeNiMn alloy fabricated by high-energy ball milling and spark plasma sintering. Journal of Alloys and Compounds, 2019. 805: p. 1237-1245.
33. Zhou, Y., et al., Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Applied physics letters, 2007. 90(18): p. 181904.
34. Li, C., et al., Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys. Journal of Alloys and Compounds, 2009. 475(1-2): p. 752-757.
35. Rao, Z., et al., Unveiling the mechanism of abnormal magnetic behavior of FeNiCoMnCu high-entropy alloys through a joint experimental-theoretical study. Physical Review Materials, 2020. 4(1): p. 014402.
36. Zhao, R.-F., et al., CoCrxCuFeMnNi high-entropy alloy powders with superior soft magnetic properties. Journal of Magnetism and Magnetic Materials, 2019. 491: p. 165574.
37. Lv, Z., et al., Development of a novel high-entropy alloy with eminent efficiency of degrading azo dye solutions. Scientific reports, 2016. 6(1): p. 1-11.
38. Yang, Y., et al., Metal surface and interface energy electrocatalysis: fundamentals, performance engineering, and opportunities. Chem, 2018. 4(9): p. 2054-2083.
39. Shao, Q., P. Wang, and X. Huang, Opportunities and challenges of interface engineering in bimetallic nanostructure for enhanced electrocatalysis. Advanced Functional Materials, 2019. 29(3): p. 1806419.
40. Zhang, G., et al., High entropy alloy as a highly active and stable electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 2018. 279: p. 19-23.
41. Yao, Y., et al., Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science, 2018. 359(6383): p. 1489-1494.
42. Chen, Y., et al., Ultra-fast self-assembly and stabilization of reactive nanoparticles in reduced graphene oxide films. Nature communications, 2016. 7(1): p. 1-9.
43. Yao, Y., et al., High-entropy nanoparticles: Synthesis-structure-property relationships and data-driven discovery. Science, 2022. 376(6589): p. eabn3103.
44. Kube, S.A. and J. Schroers, Metastability in high entropy alloys. Scripta Materialia, 2020. 186: p. 392-400.
45. Cui, M., et al., Multi-principal elemental intermetallic nanoparticles synthesized via a disorder-to-order transition. Science advances, 2022. 8(4): p. eabm4322.
46. Feng, J., et al., Unconventional alloys confined in nanoparticles: building blocks for new matter. Matter, 2020. 3(5): p. 1646-1663.
47. Gao, S., et al., Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis. Nature communications, 2020. 11(1): p. 1-11.
48. Chen, Y., et al., Synthesis of monodisperse high entropy alloy nanocatalysts from core@shell nanoparticles. Nanoscale Horizons, 2021. 6(3): p. 231-237.
49. Yang, Y., et al., Aerosol synthesis of high entropy alloy nanoparticles. Langmuir, 2020. 36(8): p. 1985-1992.
50. Kusada, K., D. Wu, and H. Kitagawa, New Aspects of Platinum Group Metal‐Based Solid‐Solution Alloy Nanoparticles: Binary to High‐Entropy Alloys. Chemistry–A European Journal, 2020. 26(23): p. 5105-5130.
51. Wu, D., et al., Platinum-group-metal high-entropy-alloy nanoparticles. Journal of the American Chemical Society, 2020. 142(32): p. 13833-13838.
52. Glasscott, M.W., et al., Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis. Nature communications, 2019. 10(1): p. 1-8.
53. Mori, K., et al., Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO2 hydrogenation. Nature Communications, 2021. 12(1): p. 1-11.
54. Löffler, T., et al., Discovery of a multinary noble metal–free oxygen reduction catalyst. Advanced Energy Materials, 2018. 8(34): p. 1802269.
55. Löffler, T., et al., Design of complex solid‐solution electrocatalysts by correlating configuration, adsorption energy distribution patterns, and activity curves. Angewandte Chemie International Edition, 2020. 59(14): p. 5844-5850.
56. Batchelor, T.A., et al., Complex‐Solid‐Solution Electrocatalyst Discovery by Computational Prediction and High‐Throughput Experimentation. Angewandte Chemie International Edition, 2021. 60(13): p. 6932-6937.
57. Ludwig, A., Discovery of new materials using combinatorial synthesis and high-throughput characterization of thin-film materials libraries combined with computational methods. NPJ Computational Materials, 2019. 5(1): p. 1-7.
58. Waag, F., et al., Kinetically-controlled laser-synthesis of colloidal high-entropy alloy nanoparticles. RSC advances, 2019. 9(32): p. 18547-18558.
59. Qiao, H., et al., Scalable Synthesis of High Entropy Alloy Nanoparticles by Microwave Heating. ACS nano, 2021. 15(9): p. 14928-14937.
60. Yao, Y., Q. Dong, and L. Hu, Overcoming immiscibility via a milliseconds-long “shock” synthesis toward alloyed nanoparticles. Matter, 2019. 1(6): p. 1451-1453.
61. Yao, Y., et al., Extreme mixing in nanoscale transition metal alloys. Matter, 2021. 4(7): p. 2340-2353.
62. Li, T., et al., Denary oxide nanoparticles as highly stable catalysts for methane combustion. Nature Catalysis, 2021. 4(1): p. 62-70.
63. Seo, D.H., et al., Single-step ambient-air synthesis of graphene from renewable precursors as electrochemical genosensor. Nature communications, 2017. 8(1): p. 1-9.
64. Wang, J. and S. Wang, Reactive species in advanced oxidation processes: Formation, identification and reaction mechanism. Chemical Engineering Journal, 2020. 401: p. 126158.
65. Barbusiński, K., Fenton reaction-controversy concerning the chemistry. Ecological Chemistry and Engineering. S, 2009. 16(3): p. 347-358.
66. Huston, P.L. and J.J. Pignatello, Degradation of selected pesticide active ingredients and commercial formulations in water by the photo-assisted Fenton reaction. Water Research, 1999. 33(5): p. 1238-1246.
67. Cui, L., et al., Cu/CuFe2O4 integrated graphite felt as a stable bifunctional cathode for high-performance heterogeneous electro-Fenton oxidation. Chemical Engineering Journal, 2021. 420: p. 127666.
68. Krumova, K. and G. Cosa, Overview of reactive oxygen species. 2016.
69. Kim, D.-h., et al., Arsenite oxidation initiated by the UV photolysis of nitrite and nitrate. Environmental science & technology, 2014. 48(7): p. 4030-4037.
70. Lian, L., et al., Kinetic study of hydroxyl and sulfate radical-mediated oxidation of pharmaceuticals in wastewater effluents. Environmental science & technology, 2017. 51(5): p. 2954-2962.
71. Lee, W., et al., Mechanistic and kinetic understanding of the UV254 photolysis of chlorine and bromine species in water and formation of oxyhalides. Environmental Science & Technology, 2020. 54(18): p. 11546-11555.
72. Liu, Y., et al., Role of the propagation reactions on the hydroxyl radical formation in ozonation and peroxone (ozone/hydrogen peroxide) processes. water research, 2015. 68: p. 750-758.
73. Yang, J., et al., Degradation of p-nitrophenol on biochars: role of persistent free radicals. Environmental science & technology, 2016. 50(2): p. 694-700.
74. Kozmér, Z., et al., The influence of radical transfer and scavenger materials in various concentrations on the gamma radiolysis of phenol. Radiation Physics and Chemistry, 2016. 124: p. 52-57.
75. Li, X., et al., The inhibition effect of tert-butyl alcohol on the TiO2 nano assays photoelectrocatalytic degradation of different organics and its mechanism. Nano-Micro Letters, 2016. 8(3): p. 221-231.
76. Ruan, M., et al., Electrochemical two-electron oxygen reduction reaction (ORR) induced aerobic oxidation of α-diazoesters. Chemical Communications, 2022.
77. Zhu, M., et al., Photochemical reactions between 1, 4-benzoquinone and O2•−. Environmental Science and Pollution Research, 2020. 27(25): p. 31289-31299.
78. Mathew, K., et al., High-throughput computational X-ray absorption spectroscopy. Scientific data, 2018. 5(1): p. 1-8.
79. Yang, J.X., et al., Rapid fabrication of high-entropy ceramic nanomaterials for catalytic reactions. ACS nano, 2021. 15(7): p. 12324-12333.
80. Mikheev, Y.A., L. Guseva, and Y.A. Ershov, Transformations of methyl orange dimers in aqueous–acid solutions, according to UV–Vis spectroscopy data. Russian Journal of Physical Chemistry A, 2017. 91(10): p. 1896-1906.
81. Cao, P., et al., Selective electrochemical H2O2 generation and activation on a bifunctional catalyst for heterogeneous electro-Fenton catalysis. Journal of hazardous materials, 2020. 382: p. 121102.
82. Cui, L., et al., Cogeneration of H2O2 and OH via a novel Fe3O4/MWCNTs composite cathode in a dual-compartment electro-Fenton membrane reactor. Separation and Purification Technology, 2020. 237: p. 116380.
83. Zhou, X., et al., Enhanced degradation of triclosan in heterogeneous E-Fenton process with MOF-derived hierarchical Mn/Fe@PC modified cathode. Chemical Engineering Journal, 2020. 384: p. 123324.
84. Zhao, H., et al., Electro-Fenton oxidation of pesticides with a novel Fe3O4@ Fe2O3/activated carbon aerogel cathode: high activity, wide pH range and catalytic mechanism. Applied Catalysis B: Environmental, 2012. 125: p. 120-127.
85. Sheng, H., et al., Stable and selective electrosynthesis of hydrogen peroxide and the electro-Fenton process on CoSe2 polymorph catalysts. Energy & Environmental Science, 2020. 13(11): p. 4189-4203.
指導教授 洪緯璿(Wei-Hsuan Hung) 審核日期 2022-8-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明