博碩士論文 109329017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:52.15.110.218
姓名 劉彥廷(Yen-Ting Liu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 鎳鉬鎢合金微柱與微螺旋結構之 MAGE製備及其在1.0 M KOH中之產氫研究
(Ni-Mo-W alloy Micro columns and Microhelix Prepared by MAGE and their Evolution of Hydrogen in 1.0 M KOH)
相關論文
★ 1M KOH中Ag-Cu、Ag-Co二元薄膜觸媒對氧還原之催化★ Mg2Ni1-xCux合金在6M KOH水溶液中之電化學吸放氫性質及相關腐蝕行為之研究
★ 以電化學方法在鋅箔上製備氧化鋅奈米結構★ 固態氧化物燃料電池陰極 La0.8Sr0.2Mn1−xRuxO3之製作與特性研究
★ 奈米氧化鋅結構之電化學研製及其在發光二極體之應用★ 銅微柱表面之電化學析鍍氧化鋅奈米結構研究
★ 香草醛在含50 V% 乙二醇低氯離子溶液中對AA6060鋁合金之腐蝕抑制研究★ 磁控濺鍍製備鋯、鈦共摻氧化鋅薄膜之結構與光電特性分析
★ 即時影像監控導引下連續電鍍製作銅-鋅合金微柱並研究其結構與機械性質★ 鑭、鍶、銀、錳氧化物之製備與其作為固態氧化物燃料電池陰極之研究
★ Photodetector - Light Harvesting and specific surface Enhancement (LivE)★ 具奈米結構赤鐵礦之製備及其在光電化學行為研究
★ 以溶凝膠法製備鋁鈦共摻雜氧化鋅薄膜並研究其微結構,腐蝕及光電化學之特性★ Ba0.5Sr0.5Co0.8Fe0.2O3-δ-La3Ni2O7+δ複合 結構應用於P-SOFC陰極之可行性研究
★ 銅鎳合金微結構之微電鍍研究★ 以微電鍍法製備三維銅錫介金屬化合物微結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究是以微陽極導引電鍍法(Micro-anode guided electroplating, MAGE)製備鎳鉬鎢三元合金微柱,並探討其在1.0 M KOH中之產氫電化學性質。微柱的優點是在極小的面積上製造出三維的電極取代薄膜電極,增加產氫催化電極的活性表面積;另一方面,則藉由鎳與鉬、 鎢過渡元素的協同效應,來製作具有優越產氫活性之三元合金微柱。本MAGE電鍍係以直徑 127 μm之白金絲披護玻璃管為陽極,而以直徑0.643 mm之銅導線為陰極。將兩極間電壓(6.5、6.0、5.5、5.0 V)與間距(20、40、60、80、100 μm)作為析鍍參數。電解液配方係由 0.38 M氯化銨、0.36 M焦磷酸鈉、0.15 M六水硫酸鎳、0.064 M二水鉬酸鈉、0.04 M二水鎢酸鈉加入DI水製成。所得之微柱經SEM 觀察其表面形貌、EDS分析化學成分、XRD測定晶體結構及COMSOL電場模擬。隨後,將合金微柱浸入1.0 M KOH 中進行循環伏安法、塔弗極化曲線等電化學測試,觀察鎳鉬鎢合金電化學性質與析氫之效能。
結果顯示在析鍍電壓6.5 V間距60 μm,鎳含量在25.4 at.%,鉬含量在64.7 at.%,鎢含量為9.9 at.%,在1.0 M KOH中具有最佳產氫效能,其塔弗斜率僅有64.8 mV/dec,其中塔弗斜率越低,代表僅需較小的過電位可獲得更大之反應速率,當電流密度在-10 mA/cm2之過電位僅需43 mV,且產氫反應之起始電位(onset potential)為-0.123 V v.s RHE,兩者越低代表產氫消耗之能量較少,而白金仍具有較佳之產氫效率,其過電位(η10)與起始電位分別僅有30 mV 與-0.04 V v.s RHE,然而白金價格十分高昂(33243 USD/kg),相較之下本實驗之鎳基合金成本僅有白金千分之一(35 USD/kg),可有效降低產氫成本。
摘要(英) In this study, Ni-Mo-W ternary alloy micro columns were prepared by Micro-anode guided electroplating (MAGE), and their electrochemical properties for hydrogen evolution in 1 M KOH were investigated. The advantage of micro columns is that a three-dimensional electrode can be produced in a very small area to replace the thin-film electrode, which increases the active surface area of the hydrogen evolution catalytic electrode. Hydrogen-producing ternary alloy micro columns. This MAGE electroplating system uses a platinum wire covering a glass tube with a diameter of 127 μm as the anode, and a copper wire with a diameter of 0.643 mm as the cathode. The voltage between the two electrodes (6.5, 6.0, 5.5, 5.0 V) and the gap(20, 40, 60, 80, 100 μm) were used as deposition parameters. The electrolyte formula is made of 0.38 M ammonium chloride, 0.36 M sodium pyrophosphate, 0.15 M nickel sulfate hexahydrate, 0.064 M sodium molybdate dihydrate, 0.04 M sodium tungstate dihydrate and water. The surface morphology of the obtained micro columns was observed by SEM, the chemical composition was analyzed by EDS, the crystal structure was determined by XRD, and the COMSOL electric field was simulated. Afterwards, the alloy micro columns were immersed in 1.0 M KOH to conduct electrochemical tests such as cyclic voltammetry and Tafel polarization curve to observe the electrochemical properties and hydrogen evolution efficiency of the nickel-molybdenum-tungsten alloy. The results show that at a deposition voltage of 6.5 V, the gap of 60 μm, the nickel content is 25.4 at.%, the molybdenum content is 64.7 at.%, and the tungsten content is 9.9 at.%. It has the best hydrogen production efficiency in 1.0 M KOH. The Tafel slope is only 64.8 mV/dec. The lower the Tafel slope, the higher the reaction rate can be obtained with a smaller overpotential. When the current density is at -10 mA/cm2, the overpotential is only 43 mV, and the onset potential of the hydrogen production reaction is -0.123 V v.s RHE. The lower the two are, the less energy is consumed for hydrogen production, and platinum still has better hydrogen production efficiency. Its overpotential (η10) and the onset potentials are only 30 mV and -0.04 V v.s RHE, respectively. However, the price of platinum is very expensive (33243 USD/kg). In comparison, the cost of nickel-based alloys in this experiment (35 USD/kg) is only one thousandth of platinum. Therefore, the cost of hydrogen production can be effectively reduced.
關鍵字(中) ★ 微陽極引導電鍍
★ 鎳鉬鎢合金
★ 析氫反應
★ 非貴金屬觸媒
★ 微螺旋結構
關鍵字(英) ★ MAGE
★ Nickel-molybdenum-tungsten alloy
★ Hydrogen evolution reaction (HER)
★ Non-precious metal catalyst
★ Microcolumn and Microhelixes
論文目次 摘要 v
Abstract vii
致謝 ix
目錄 x
表目錄 xiv
圖目錄 xvii
第一章、 前言 1
1-1 全球能源未來發展 1
1-2 產氫方法之介紹 1
1-3 水電解電極觸媒之選擇 3
1-4 研究動機與目的 4
第二章、 文獻回顧 5
2-1 電鍍之原理與成核 5
2-2 合金共鍍 6
2-2-1 規則共鍍 8
2-2-2 誘導共鍍 8
2-3 局部電鍍法發展 11
2-4微陽極導引電鍍之發展 12
2-5 電鍍參數與合金成分 14
2-6 鎳鉬合金與鎳鎢合金之結晶相 15
2-7 鹼性水電解機制 15
2-8 析氫火山圖 16
2-9 鎳基合金之析氫反應相關研究 17
2-9-1 鎳鋅合金 18
2-9-2 鎳鉬合金 19
2-9-3 鎳鎢合金 20
第三章、 研究方法與實驗設備 21
3-1 實驗流程 21
3-2 鍍液選擇與配置 21
3-3 陰陽極製備 22
3-4 微陽極引導電鍍法 23
3-4-1單軸微陽極引導電鍍法 23
3-4-2五軸微陽極引導電鍍法 24
3-5 法拉第效率計算 25
3-6 鎳鉬鎢微柱之晶體結構分析 26
3-7 鎳鉬鎢微柱之表面形貌、橫截面與化學成分分析 26
3-8 COMSOL電場模擬設定 27
3-9 奈米壓痕測試 27
3-10 析鍍極化曲線測試 29
3-11 產氫電化學裝置與參數設定 30
3-11-1 塔弗極化曲線(Tafel polarization curve) 30
3-11-2 循環伏安法(Cyclic voltammetry, CV) 32
3-11-3 計時電位法(Chronopotentiometry,CP) 32
3-11-4 電化學交流阻抗(Electrochemical impedance spectroscopy,EIS) 33
3-11-5 定電流氫氣蒐集法 33
第四章、 結果 35
4-1 改變析鍍間距 35
4-1-1 鎳鉬鎢合金微柱之化學成分 35
4-1-2 不同析鍍間距之鎳鉬鎢合金微柱之表面形貌 36
4-1-3 不同析鍍間距之合金微柱橫截面 36
4-1-4 不同析鍍間距之析鍍電流與效率 38
4-1-5 不同析鍍間距之COMSOL電場模擬 39
4-2 改變析鍍電壓 39
4-2-1 鎳鉬鎢合金微柱之化學成分 40
4-2-2 不同析鍍電壓之微柱表面形貌 40
4-2-3 不同析鍍電壓之析鍍電流 41
4-2-4 不同析鍍電壓之COMSOL電場模擬 41
4-3 鎳鉬鎢合金微柱之晶體結構 42
4-4 鎳鉬鎢合金微柱之機械性質 43
4-5 鎳鉬鎢合金微柱之析鍍陰極極化曲線 43
4-6 鎳鉬鎢合金在1.0 M KOH中產氫測試 44
4-6-1 合金微柱產氫下之Tafel極化曲線 44
4-6-2 合金微柱產氫下之循環伏安法 46
4-6-3 合金微柱產氫下之計時電位法 47
4-6-4 微柱產氫反應之交流阻抗頻譜 49
4-6-5 微柱產氫反應之定電流氫氣蒐集 49
4-6-6 產氫後鎳鉬鎢合金微柱之性質 51
4-7 微螺旋結構之表面形貌 52
第五章、 討論 53
5-1 析鍍參數對於微柱化學成分影響 53
5-2 析鍍參數對於微柱表面形貌影響 54
5-3 析鍍參數對於微柱橫截面元素分佈影響 56
5-4 析鍍參數對於微柱析鍍電流影響 58
5-5 析鍍參數對於微柱析鍍效率影響 58
5-6 析鍍參數與合金微柱之晶體結構探討 59
5-7 析鍍參數對於微柱機械性質影響 60
5-8 析鍍之陰極極化曲線 60
5-9 析鍍參數對於微柱產氫性能影響 63
5-9-1 Tafel 極化曲線 63
5-9-2 循環伏安法 64
5-9-3 計時電位法 65
5-9-4 交流阻抗頻譜 66
5-9-5 定電流氫氣蒐集法 67
5-9-6 產氫反應對鎳鉬鎢合金微柱性質之影響 68
5-9-7 產氫效能與成本比較 68
5-10 析鍍角度對於微螺旋結構表面形貌影響 69
5-11 微螺旋陣列與微柱陣列之產氫效能 70
第六章、 結論與未來展望 71
參考文獻 73
參考文獻 1.Rousselot, M. Global Energy Trends 2021; Available from: https://www.enerdata.net/publications/reports-presentations/world-energy-trends.html.
2.Veziroglu, T.N., “Conversion to hydrogen economy”, Energy Procedia. 29, p. 654-656, 2012
3.Hordeski, M.F.,Alternative fuels: the future of hydrogen, CRC Press,2020.
4.Barreto, L., Makihira, A., and Riahi, K., “The hydrogen economy in the 21st century: a sustainable development scenario”, International Journal of Hydrogen Energy. 28(3), p. 267-284, 2003
5.Cabán-Acevedo, M., Stone, M.L., Schmidt, J., Thomas, J.G., Ding, Q., Chang, H.-C., Tsai, M.-L., He, J.-H., and Jin, S., “Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide”, Nature materials. 14(12), p. 1245-1251, 2015
6.Pletcher, D. and Li, X., “Prospects for alkaline zero gap water electrolysers for hydrogen production”, International Journal of Hydrogen Energy. 36(23), p. 15089-15104, 2011
7.Baharudin, L. and Watson, M.J., “Hydrogen applications and research activities in its production routes through catalytic hydrocarbon conversion”, Reviews in Chemical Engineering. 34(1), p. 43-72, 2018
8.Santos, D.M., Sequeira, C.A., and Figueiredo, J.L., “Hydrogen production by alkaline water electrolysis”, Química Nova. 36, p. 1176-1193, 2013
9.Wendt, H. and Kreysa, G., ”Electrochemical Reaction Engineering”, Electrochemical Engineering: Science and Technology in Chemical and Other Industries, H. Wendt and G. Kreysa, Editors. 1999, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 128-152.
10.Mauer, A.E., Kirk, D.W., and Thorpe, S.J., “The role of iron in the prevention of nickel electrode deactivation in alkaline electrolysis”, Electrochimica acta. 52(11), p.3505-3509, 2007
11.Soares, D.M., Teschke, O., and Torriani, I., “Hydride Effect on the Kinetics of the Hydrogen Evolution Reaction on Nickel Cathodes in Alkaline Media”, Journal of The Electrochemical Society. 139(1), p. 98-105, 1992
12.Brewer, L. and Wengert, P.R., “Erratum to: Transition metal alloys of extraordinary stability; An example of generalized Lewis-acid-base interactions in metallic systems”, Metallurgical Transactions. 4(1), p. 83-104, 1973
13.Jalai , M.M., “Advances in electrocatalysis for hydrogen evolution in the light of the Brewer-Engel valence-bond theory”, Journal of Molecular Catalysis. 38, p. 161-202, 1986
14.Jaksic, M.M., “Hypo–hyper-d-electronic interactive nature of interionic synergism in catalysis and electrocatalysis for hydrogen reactions”, International journal of hydrogen energy. 26(6), p. 559-578, 2001
15.Aaboubi, O., “Hydrogen evolution activity of Ni–Mo coating electrodeposited under magnetic field control”, International Journal of Hydrogen Energy. 36(8), p. 4702-4709, 2011
16.Krstajić, N.V., Jović, V.D., Gajić-Krstajić, L., Jović, B.M., Antozzi, A.L., and Martelli, G.N., “Electrodeposition of Ni–Mo alloy coatings and their characterization as cathodes for hydrogen evolution in sodium hydroxide solution”, International Journal of Hydrogen Energy. 33(14), p. 3676-3687, 2008
17.拉維雅, "On the Fabrication of Three-Dimensional Nickel-Zinc alloys by electroplating and Their Performance of Hydrogen evolution in Alkaline Water Electrolysis", 碩士學位. 國立中央大學. 2020
18.Ahn, S.H., Choi, I., Park, H.-Y., Hwang, S.J., Yoo, S.J., Cho, E., Kim, H.-J., Henkensmeier, D., Nam, S.W., and Kim, S.-K., “Effect of morphology of electrodeposited Ni catalysts on the behavior of bubbles generated during the oxygen evolution reaction in alkaline water electrolysis”, Chemical communications. 49(81), p. 9323-9325, 2013
19.柯賢文,表面與薄膜處理技術, 第三版, 全華圖書, 台北市,民國91年.
20.Plieth, W.,Electrochemistry for materials science, Elsevier,2008.
21.Bard, A.,Standard potentials in aqueous solution, Routledge,2017.
22.Brenner, A. and Senderoff, S., “Electrodeposition of alloys”, New York, 1964
23.Tsyntsaru, N., Cesiulis, H., Donten, M., Sort, J., Pellicer, E., and Podlaha-Murphy, E.J., “Modern trends in tungsten alloys electrodeposition with iron group metals”, Surface Engineering and Applied Electrochemistry. 48(6), p. 491-520, 2012
24.Sanches, L.S., Domingues, S.H., Carubelli, A., and Mascaro, L.H., “Electrodeposition of Ni-Mo and Fe-Mo alloys from sulfate-citrate acid solutions”, Journal of the Brazilian Chemical Society. 14(4), p. 556-563, 2003
25.Cesiulis, H., Tsyntsaru, N., Budreika, A., and Skridaila, N., “Electrodeposition of CoMo and CoMoP alloys from the weakly acidic solutions”, Surface Engineering and Applied Electrochemistry. 46(5), p. 406-415, 2010
26.Fukushima, H., Akiyama, T., Akagi, S., and Higashi, K., “Role of iron-group metals in the induced codeposition of molybdenum from aqueous solution”, Transactions of the Japan Institute of Metals. 20(7), p. 358-364, 1979
27.Podlaha, E. and Landolt, D., “Induced codeposition: III. Molybdenum alloys with nickel, cobalt, and iron”, Journal of the Electrochemical Society. 144(5), p. 1672, 1997
28.Красиков, А. and Красиков, В., “MECHANISM OF NICKEL-TUNGSTEN ALLOY ELECTRODEPOSITION FROM PYROPHOSPHATE ELECTROLYTE”,
29.Suvorov, D.V., Gololobov, G.P., Tarabrin, D.Y., Slivkin, E.V., Karabanov, S.M., and Tolstoguzov, A., “Electrochemical deposition of Ni–W crack-free coatings”, Coatings. 8(7), p. 233, 2018
30.Park, J.-S., Jeong, G.-J., Kim, Y.-J., Kim, K.-J., and Lee, C.-K., “A study on corrosion resistance and electrical surface conductivity of an electrodeposited Ni-W thin film”, Journal of the Korean institute of surface engineering. 44(2), p. 68-73, 2011
31.Hunter, I.W., Lafontaine, S.R., and Madden, J.D., "Three dimensional microfabrication by localized electrodeposition and etching". Google Patents. 1997
32.El-Giar, E. and Thomson, D. Localized electrochemical plating of interconnectors for microelectronics. IEEE WESCANEX 97 Communications, Power and Computing. Conference Proceedings. IEEE.1997
33.Said, R., “Microfabrication by localized electrochemical deposition: experimental investigation and theoretical modelling”, Nanotechnology. 14(5), p. 523, 2003
34.Seol, S., Yi, J., Jin, X., Kim, C., Je, J., Tsai, W., Hsu, P., Hwu, Y., Chen, C., and Chang, L., “Coherent microradiology directly observes a critical cathode-anode distance effect in localized electrochemical deposition”, Electrochemical Solid State Letters. 7(9), p. C95, 2004
35.Seol, S.K., Pyun, A.R., Hwu, Y., Margaritondo, G., and Je, J.H., “Localized electrochemical deposition of copper monitored using real‐time x‐ray microradiography”, Advanced Functional Materials. 15(6), p. 934-937, 2005
36.Seol, S.K., Kim, J.T., Je, J.H., Hwu, Y., and Margaritondo, G., “Fabrication of freestanding metallic micro hollow tubes by template-free localized electrochemical deposition”, Electrochemical Solid State Letters. 10(5), p. C44, 2007
37.Lee, C.-Y., Lin, C.-S., and Lin, B.-R., “Localized electrochemical deposition process improvement by using different anodes and deposition directions”, Journal of Micromechanics Microengineering. 18(10), p. 105008, 2008
38.Wang, F., Xiao, H., and He, H., “Effects of applied potential and the initial gap between electrodes on localized electrochemical deposition of micrometer copper columns”, Scientific reports. 6, p. 26270, 2016
39.Wang, F., Bian, H., and Xiao, Y., “Fabrication of Micro-Sized Copper Columns Using Localized Electrochemical Deposition with a 20 μm Diameter Micro Anode”, ECS Journal of Solid State Science and Technology. 8(4), p. P223-P227, 2019
40.Wang, F., Wang, F., and He, H., “Parametric electrochemical deposition of controllable morphology of copper micro-columns”, Journal of The Electrochemical Society. 163(10), p. E322, 2016
41.Wang, F., Hua, B., and Niu, Q., “Fabrication of micro-sized-copper column array through localized electrochemical deposition using 20-μm-diameter micro-anode”, Journal of Solid State Electrochemistry. 26(3), p. 799-808, 2022
42.張庭綱, "微陽極導引電鍍法製作銅微柱及銅柵欄之研究". 國立中央大學. 2004年
43.陳譽升, "鎳微柱電鍍受鍍浴黏度與電阻率之影響". 國立中央大學. 2011年
44.游睿為, "單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析". 國立中央大學,. 2001年
45.葉柏青, "微陽極導引電鍍與監測". 國立中央大學. 2003年
46.賴格源, "微陽極導引電鍍銅其組織及覆蓋範圍之探討". 國立中央大學. 2006年
47.Lin, J.C., Jang, S.B., Lee, D.L., Chen, C.C., Yeh, P.C., Chang, T.K., and Yang, J.H., “Fabrication of micrometer Ni columns by continuous and intermittent microanode guided electroplating”, Journal of Micromechanics and Microengineering. 15(12), p. 2405-2413, 2005
48.Lin, J.C., Chang, T.K., Yang, J.H., Jeng, J.H., Lee, D.L., and Jiang, S.B., “Fabrication of a micrometer Ni–Cu alloy column coupled with a Cu micro-column for thermal measurement”, Journal of Micromechanics and Microengineering. 19(1), 2009
49.Chang, T.K., Lin, J.C., Yang, J.H., Yeh, P.C., Lee, D.L., and Jiang, S.B., “Surface and transverse morphology of micrometer nickel columns fabricated by localized electrochemical deposition”, Journal of Micromechanics and Microengineering. 17(11), p. 2336-2343, 2007
50.鄭家宏, "以微陽極導引電鍍法製作鎳銅合金銅微柱". 國立中央大學. 2005年
51.楊仁泓, "微陽極導引電鍍法製備微析物之局部電場強度分析". 國立中央大學. 2009年
52.Ciou, Y.-J., Hwang, Y.-R., and Lin, J.-C., “Fabrication of Two-Dimensional Microstructures by Using Micro-Anode-Guided Electroplating with Real-Time Image Processing”, ECS Journal of Solid State Science and Technology. 3(7), p. P268-P271, 2014
53.顧乃華, "以微陽極導引電鍍法製備銅螺旋微米結構與其機械性質分析". 國立中央大學. 2015年
54.李昱, "以微電鍍法製備鎳鐵合金三維微結構之研究". 國立中央大學. 2018年
55.李盈家, "以微電鍍法析鍍鎳鎢合金微結構並研究其在鹼性溶液電解產氫行為". 國立中央大學. 2020年
56.Tseng, Y.-T., Wu, G.-X., Lin, J.-C., Hwang, Y.-R., Wei, D.-H., Chang, S.-Y., and Peng, K.-C., “Preparation of Co-Fe-Ni alloy micropillar by microanode-guided electroplating”, Journal of Alloys and Compounds. 885, p. 160873, 2021
57.Hasan, S.N., Xu, M., and Asselin, E., “Electrodeposition of metallic molybdenum and its alloys–a review”, Canadian Metallurgical Quarterly. 58(1), p. 1-18, 2019
58.Li, Y., Tan, X., Hocking, R.K., Bo, X., Ren, H., Johannessen, B., Smith, S.C., and Zhao, C., “Implanting Ni-O-VOx sites into Cu-doped Ni for low-overpotential alkaline hydrogen evolution”, Nature communications. 11(1), p. 1-9, 2020
59.Liu, J., Yan, J., Pei, Z., Gong, J., and Sun, C., “Effects of Mo content on the grain size, hardness and anti–wear performance of electrodeposited nanocrystalline and amorphous Ni–Mo alloys”, Surface and Coatings Technology. 404, p. 126476, 2020
60.Neethu, R.M. and Hegde, A.C., “Development of Ni-W alloy coatings and their electrocatalytic activity for water splitting reaction”, Physica B: Condensed Matter. 597, p. 412359, 2020
61.Sun, S. and Podlaha, E., “Electrodeposition of Mo-Rich, MoNi alloys from an aqueous electrolyte”, Journal of the Electrochemical Society. 159(2), p. D97, 2011
62.Sun, S. and Podlaha, E.J., “Electrodeposition of Mo-Rich, MoNi Alloys from an Aqueous Electrolyte”, Journal of The Electrochemical Society. 159, 2011
63.Halim, J., Abdel-Karim, R., El-Raghy, S., Nabil, M., and Waheed, A., “Electrodeposition and characterization of nanocrystalline Ni-Mo catalysts for hydrogen production”, Journal of Nanomaterials. 2012, 2012
64.Donten, M., Cesiulis, H., and Stojek, Z., “Electrodeposition of amorphous/nanocrystalline and polycrystalline Ni–Mo alloys from pyrophosphate baths”, Electrochimica Acta. 50(6), p. 1405-1412, 2005
65.Younes, O., Zhu, L., Rosenberg, Y., Shacham-Diamand, Y., and Gileadi, E., “Electroplating of amorphous thin films of tungsten/nickel alloys”, Langmuir. 17(26), p. 8270-8275, 2001
66.Boudjehem, H., Hayet, M., Nemamcha, A., Pronkin, S., and Rehspringer, J.L., “Effect of deposition conditions on the properties of Ni–Mo–W coatings as electrocatalysts for hydrogen evolution reaction”, Journal of Applied Electrochemistry. 52, 2022
67.Shinagawa, T., Garcia-Esparza, A.T., and Takanabe, K., “Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion”, Scientific reports. 5(1), p. 1-21, 2015
68.Elias, L., Scott, K., and Hegde, A.C., “Electrolytic synthesis and characterization of electrocatalytic Ni-W alloy”, Journal of Materials Engineering and Performance. 24(11), p. 4182-4191, 2015
69.Conway, B.E. and Jerkiewicz, G., “Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the ‘volcano curve’ for cathodic H2 evolution kinetics”, Electrochimica Acta. 45(25), p. 4075-4083, 2000
70.Shetty, S., Sadiq, M.M.J., Bhat, D.K., and Hegde, A.C., “Electrodeposition and characterization of Ni-Mo alloy as an electrocatalyst for alkaline water electrolysis”, Journal of Electroanalytical Chemistry. 796, p. 57-65, 2017
71.Protsenko, V. and Danilov, F., ”Current trends in electrodeposition of electrocatalytic coatings”, Methods for Electrocatalysis. 2020, Springer. p. 263-299.
72.Li, M., Wang, H., Zhu, W., Li, W., Wang, C., and Lu, X., “RuNi nanoparticles embedded in N‐doped carbon nanofibers as a robust bifunctional catalyst for efficient overall water splitting”, Advanced Science. 7(2), p. 1901833, 2020
73.Stoney, G.G., “The tension of metallic films deposited by electrolysis”, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 82(553), p. 172-175, 1909
74.Vij, V., Sultan, S., Harzandi, A.M., Meena, A., Tiwari, J.N., Lee, W.-G., Yoon, T., and Kim, K.S., “Nickel-based electrocatalysts for energy-related applications: oxygen reduction, oxygen evolution, and hydrogen evolution reactions”, Acs Catalysis. 7(10), p. 7196-7225, 2017
75.Brown, D., Mahmood, M., Man, M., and Turner, A.J.E.A., “Preparation and characterization of low overvoltage transition metal alloy electrocatalysts for hydrogen evolution in alkaline solutions”. 29(11), p. 1551-1556, 1984
76.Suffredini, H., Cerne, J., Crnkovic, F., Machado, S., and Avaca, L., “Recent developments in electrode materials for water electrolysis”, International Journal of Hydrogen Energy. 25(5), p. 415-423, 2000
77.Sheela, G., Pushpavanam, M., and Pushpavanam, S., “Zinc–nickel alloy electrodeposits for water electrolysis”, International journal of hydrogen energy. 27(6), p. 627-633, 2002
78.Solmaz, R. and Kardaş, G., “Hydrogen evolution and corrosion performance of NiZn coatings”, Energy Conversion and Management. 48(2), p. 583-591, 2007
79.Zheng, Z., Li, N., Wang, C.-Q., Li, D.-Y., Meng, F.-Y., and Zhu, Y.-M., “Effects of CeO2 on the microstructure and hydrogen evolution property of Ni–Zn coatings”, Journal of Power Sources. 222, p. 88-91, 2013
80.Ganci, F., Buccheri, B., Patella, B., Cannata, E., Aiello, G., Mandin, P., and Inguanta, R., “Electrodeposited nickel–zinc alloy nanostructured electrodes for alkaline electrolyzer”, International Journal of Hydrogen Energy. 47(21), p. 11302-11315, 2022
81.Zhang, J., Zhou, Y., Zhang, S., Li, S., Hu, Q., Wang, L., Wang, L., and Ma, F., “Electrochemical preparation and post-treatment of composite porous foam NiZn alloy electrodes with high activity for hydrogen evolution”, Scientific Reports. 8(1), p. 1-8, 2018
82.Zhang, J., Wang, T., Liu, P., Liao, Z., Liu, S., Zhuang, X., Chen, M., Zschech, E., and Feng, X., “Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics”, Nature communications. 8(1), p. 1-8, 2017
83.Navarro-Flores, E., Chong, Z., and Omanovic, S., “Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium”, Journal of Molecular Catalysis A: Chemical. 226(2), p. 179-197, 2005
84.Laszczyńska, A., Tylus, W., and Szczygieł, I., “Electrocatalytic properties for the hydrogen evolution of the electrodeposited Ni–Mo/WC composites”, International Journal of Hydrogen Energy. 46(44), p. 22813-22831, 2021
85.Han, Q., Cui, S., Pu, N., Chen, J., Liu, K., and Wei, X., “A study on pulse plating amorphous Ni–Mo alloy coating used as HER cathode in alkaline medium”, International Journal of Hydrogen Energy. 35(11), p. 5194-5201, 2010
86.Nairan, A., Zou, P., Liang, C., Liu, J., Wu, D., Liu, P., and Yang, C., “NiMo solid solution nanowire array electrodes for highly efficient hydrogen evolution reaction”, Advanced Functional Materials. 29(44), p. 1903747, 2019
87.González Buch, C., Herraiz Cardona, I., Ortega Navarro, E.M., García-Antón, J., and Pérez-Herranz, V., “Development of Ni-Mo, Ni-W and Ni-Co macroporous materials for hydrogen evolution reaction”, Chemical Engineering Transactions. 32, p. 865-870, 2013
88.Hong, S.H., Ahn, S.H., Choi, J., Kim, J.Y., Kim, H.Y., Kim, H.-J., Jang, J.H., Kim, H., and Kim, S.-K., “High-activity electrodeposited NiW catalysts for hydrogen evolution in alkaline water electrolysis”, Applied Surface Science. 349, p. 629-635, 2015
89.Rashkov, R., Arnaudova, M., Avdeev, G., Zielonka, A., Jannakoudakis, P., Jannakoudakis, A., and Theodoridou, E., “NiW/TiOx composite layers as cathode material for hydrogen evolution reaction”, International Journal of Hydrogen Energy. 34(5), p. 2095-2100, 2009
90.Vernickaite, E., Tsyntsaru, N., Sobczak, K., and Cesiulis, H., “Electrodeposited tungsten-rich Ni-W, Co-W and Fe-W cathodes for efficient hydrogen evolution in alkaline medium”, Electrochimica Acta. 318, p. 597-606, 2019
91.Ganci, F., Patella, B., Cannata, E., Cusumano, V., Aiello, G., Sunseri, C., Mandin, P., and Inguanta, R., “Ni alloy nanowires as high efficiency electrode materials for alkaline electrolysers”, International Journal of Hydrogen Energy. 46(72), p. 35777-35789, 2021
92.Faraday, M., “Experimental Researches in Chemistry, 5th and 7th series”, Phil Trans, p. 675-710, 1833
93.Walsh, F., “FARADAY AND HIS LAWS OF ELECTROLYSIS: AN APPRECIATION”, Bulletin of Electrochemistry. 7(11), p. 481-484, 1992
94.Ramamurty, U. and Jang, J.-i., “Nanoindentation for probing the mechanical behavior of molecular crystals–a review of the technique and how to use it”, CrystEngComm. 16(1), p. 12-23, 2014
95.de Chialvo, M.R.G. and Chialvo, A.C., “The polarisation resistance, exchange current density and stoichiometric number for the hydrogen evolution reaction: theoretical aspects”, Journal of Electroanalytical Chemistry. 415(1), p. 97-106, 1996
96.Kakaei, K., Esrafili, M.D., and Ehsani, A., ”Graphene and anticorrosive properties”, Interface science and technology. 2019, Elsevier. p. 303-337.
97.Murthy, A.P., Theerthagiri, J., and Madhavan, J., “Insights on Tafel Constant in the Analysis of Hydrogen Evolution Reaction”, The Journal of Physical Chemistry C. 122(42), p. 23943-23949, 2018
98.Bard, A.J. and Faulkner, L.R.,Student Solutions Manual to accompany Electrochemical Methods: Fundamentals and Applicaitons, 2e, John Wiley & Sons,2002.
99.Stull, D.R., “Vapor pressure of pure substances. Organic and inorganic compounds”, Industrial & Engineering Chemistry. 39(4), p. 517-540, 1947
100.Konings, R. and Cordfunke, E., “The vapour pressures of hydroxides I. The alkali hydroxides KOH and CsOH”, The Journal of Chemical Thermodynamics. 20(1), p. 103-108, 1988
101.Wang, F., Xiao, H., and He, H., “Effects of applied potential and the initial gap between electrodes on localized electrochemical deposition of micrometer copper columns”, Scientific reports. 6(1), p. 1-8, 2016
102.Chang, T., Lin, J., Yang, J., Yeh, P., Lee, D., and Jiang, S., “Surface and transverse morphology of micrometer nickel columns fabricated by localized electrochemical deposition”, Journal of Micromechanics and Microengineering. 17(11), p. 2336, 2007
103.El‐Giar, E., Said, R., Bridges, G., and Thomson, D., “Localized electrochemical deposition of copper microstructures”, Journal of the Electrochemical Society. 147(2), p. 586, 2000
104.Chun-Ying, L., Wei-Ti, M., Ming-Der, G., and Hung-Bin, L., “A study on the corrosion and wear behavior of nanocrystalline NiMo electrodeposited coatings”, Surface and Coatings Technology. 366, p. 286-295, 2019
105.Allam, M., Benaicha, M., and Dakhouche, A., “Electrodeposition and characterization of NiMoW alloy as electrode material for hydrogen evolution in alkaline water electrolysis”, international journal of hydrogen energy. 43(6), p. 3394-3405, 2018
106.Wang, M., Wang, Z., and Guo, Z., “Electrodeposited free-crack NiW films under super gravity filed: Structure and excellent corrosion property”, Materials Chemistry and Physics. 148(1-2), p. 245-252, 2014
107.Wang, M., Wang, Z., and Guo, Z., “Understanding of the intensified effect of super gravity on hydrogen evolution reaction”, international journal of hydrogen energy. 34(13), p. 5311-5317, 2009
108.Motoyama, M., Fukunaka, Y., Sakka, T., and Ogata, Y.H., “Effect of Surface pH on Electrodeposited Ni Films”, Journal of The Electrochemical Society. 153(7), p. C502, 2006
109.Younes, O. and Gileadi, E., “Electroplating of Ni/W alloys I. Ammoniacal citrate baths”, Journal of The Electrochemical Society. 149(2), p. C100-C111, 2002
110.Kim, H., Park, H., Tran, D.S., and Kim, S.-K., “Facile fabrication of amorphous NiMo catalysts for alkaline hydrogen oxidation reaction”, Journal of Industrial and Engineering Chemistry. 94, p. 309-316, 2021
111.Safizadeh, F., Ghali, E., and Houlachi, G., “Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions – A Review”, International Journal of Hydrogen Energy. 40(1), p. 256-274, 2015
112.Sakita, A.M.P., Passamani, E.C., Kumar, H., Cornejo, D.R., Fugivara, C.S., Noce, R.D., and Benedetti, A.V., “Influence of current density on crystalline structure and magnetic properties of electrodeposited Co-rich CoNiW alloys”, Materials Chemistry and Physics. 141(1), p. 576-581, 2013
113.Golden, T.D., Tientong, J., and Mohamed, A.M., ”Electrodeposition of Nickel-Molybdenum (Ni-Mo) Alloys for Corrosion Protection in Harsh Environments”, Research Perspectives on Functional Micro-and Nanoscale Coatings. 2016, IGI Global. p. 369-395.
114.Gloriant, T., “Microhardness and abrasive wear resistance of metallic glasses and nanostructured composite materials”, Journal of Non-Crystalline Solids. 316(1), p. 96-103, 2003
115.Tseng, Y.-T., Lin, J.-C., Shian-Ching Jang, J., Tsai, P.-H., Ciou, Y.-J., and Hwang, Y.-R., “Three-Dimensional Amorphous Ni–Cr Alloy Printing by Electrochemical Additive Manufacturing”, ACS Applied Electronic Materials. 2(11), p. 3538-3548, 2020
116.Lačnjevac, U., Jović, B.M., and Jović, V.D., “Electrodeposition of Ni, Sn and Ni–Sn alloy coatings from pyrophosphate-glycine bath”, Journal of the electrochemical society. 159(5), p. D310, 2012
117.Hu, Y., Yu, Y., Ge, H., Wei, G., and Jiang, L., “Study on Mechanical and Anticorrosion Performance of NiW Alloy Coatings Prepared by Induced Codeposition”, Int. J. Electrochem. Sci. 14, p. 1649-1657, 2019
118.Vernickait , E., Tsyntsaru, N., Sobczak, K., and Cesiulis, H., “Electrodeposited tungsten-rich Ni-W, Co-W and Fe-W cathodes for efficient hydrogen evolution in alkaline medium”, Electrochimica Acta, 2019
119.Jakšić, M.M., “Hypo–hyper-d-electronic interactive nature of synergism in catalysis and electrocatalysis for hydrogen reactions”, Electrochimica Acta. 45(25-26), p. 4085-4099, 2000
120.Wang, M., Wang, Z., Yu, X., and Guo, Z., “Facile one-step electrodeposition preparation of porous NiMo film as electrocatalyst for hydrogen evolution reaction”, International Journal of Hydrogen Energy. 40(5), p. 2173-2181, 2015
121.Anantharaj, S. and Noda, S., “Appropriate use of electrochemical impedance spectroscopy in water splitting electrocatalysis”, ChemElectroChem. 7(10), p. 2297-2308, 2020
122.Zhang, Q., Li, P., Zhou, D., Chang, Z., Kuang, Y., and Sun, X., “Superaerophobic ultrathin Ni–Mo alloy nanosheet array from in situ topotactic reduction for hydrogen evolution reaction”, Small. 13(41), p. 1701648, 2017
123.Chen, T.-Y., Zhang, Y.-Q., Fu, Y.-Y., Qian, M., Dai, H.-J., Ye, B., Qin, S., and Yang, Q.-H., “Construction of Ni–Mo–P heterostructures with efficient hydrogen evolution performance under acidic condition”, Journal of Materials Science: Materials in Electronics. 32(11), p. 14966-14975, 2021
124.Eladgham, E.H., Rodene, D.D., Sarkar, R., Arachchige, I.U., and Gupta, R.B., “Electrocatalytic Activity of Bimetallic Ni–Mo–P Nanocrystals for Hydrogen Evolution Reaction”, ACS Applied Nano Materials. 3(8), p. 8199-8207, 2020
125.Mollamahale, Y.B., Jafari, N., and Hosseini, D., “Electrodeposited Ni-W nanoparticles: Enhanced catalytic activity toward hydrogen evolution reaction in acidic media”, Materials Letters. 213, p. 15-18, 2018
126.Wu, H., Kong, L., Ji, Y., Yan, J., Ding, Y., Li, Y., Lee, S.T., and Liu, S., “Double‐Site Ni–W Nanosheet for Best Alkaline HER Performance at High Current Density> 500 mA cm− 2”, Advanced Materials Interfaces. 6(10), p. 1900308, 2019
127.Zhang, H., Feng, Z., Wang, L., Li, D., and Xing, P., “Bifunctional nanoporous Ni-Zn electrocatalysts with super-aerophobic surface for high-performance hydrazine-assisted hydrogen production”, Nanotechnology. 31(36), p. 365701, 2020
128.Haj-Taieb, M., Haseeb, A., Caulfield, J., Bade, K., Aktaa, J., and Hemker, K., “Thermal stability of electrodeposited LIGA Ni–W alloys for high temperature MEMS applications”, Microsystem Technologies. 14(9), p. 1531-1536, 2008
129.Allahyarzadeh, M., Ashrafi, A., Golgoon, A., and Roozbehani, B., “Effect of pulse plating parameters on the structure and properties of electrodeposited NiMo films”, Materials Chemistry and Physics. 175, p. 215-222, 2016
130.Hwang, W.S. and Lee, J.J. Effects of heat treatment on hardness of nanocrystalline Ni-W electrodeposits. Materials science forum. Trans Tech Publ.2006
131.Manazoğlu, M., Hapçı, G., and Orhan, G., “Effect of electrolysis parameters of Ni–Mo alloy on the electrocatalytic activity for hydrogen evaluation and their stability in alkali medium”, Journal of Applied Electrochemistry. 46(2), p. 191-204, 2016
132.Rad, P.J., Aliofkhazraei, M., and Darband, G.B., “Ni-W nanostructure well-marked by Ni selective etching for enhanced hydrogen evolution reaction”, International Journal of Hydrogen Energy. 44(2), p. 880-894, 2019
133.Laszczyńska, A. and Szczygieł, I., “Electrocatalytic activity for the hydrogen evolution of the electrodeposited Co–Ni–Mo, Co–Ni and Co–Mo alloy coatings”, International Journal of Hydrogen Energy. 45(1), p. 508-520, 2020
134.Solmaz, R., Döner, A., and Kardaş, G., “Electrochemical deposition and characterization of NiCu coatings as cathode materials for hydrogen evolution reaction”, Electrochemistry communications. 10(12), p. 1909-1911, 2008
指導教授 林景崎(Jing-Chie Lin) 審核日期 2022-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明