博碩士論文 109423016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:18.188.95.170
姓名 劉星瑜(Hsing-Yu Liu)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱
(A Multi-turn Dialogue Generation Framework Based on History and Context Information)
相關論文
★ 多重標籤文本分類之實證研究 : word embedding 與傳統技術之比較★ 基於圖神經網路之網路協定關聯分析
★ 學習模態間及模態內之共用表示式★ Hierarchical Classification and Regression with Feature Selection
★ 病徵應用於病患自撰日誌之情緒分析★ 基於注意力機制的開放式對話系統
★ 針對特定領域任務—基於常識的BERT模型之應用★ 基於社群媒體使用者之硬體設備差異分析文本情緒強烈程度
★ 機器學習與特徵工程用於虛擬貨幣異常交易監控之成效討論★ 捷運轉轍器應用長短期記憶網路與機器學習實現最佳維保時間提醒
★ 基於半監督式學習的網路流量分類★ ERP日誌分析-以A公司為例
★ 企業資訊安全防護:網路封包蒐集分析與網路行為之探索性研究★ 資料探勘技術在顧客關係管理之應用─以C銀行數位存款為例
★ 人臉圖片生成與增益之可用性與效率探討分析★ 人工合成文本之資料增益於不平衡文字分類問題
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-26以後開放)
摘要(中) 對話機器人是一種自然語言生成的應用,它也被視為一種多輪次的對話系統,可 以維持對話超過一輪次以上。然而,使用者會期望對話機器人可以在幾輪次對話後, 依然記得之前的對話資訊,並在當前輪次的對話中適當地生成有意義、相關和一致的 話語。因此,我們提出了一種對話歷史與上下文資訊的多輪對話生成框架,旨在探討 歷史對話或上下文對話對多輪次對話的影響。
本研究透過階層次遞迴的框架,與先前有關多輪次對話生成任務研究進行比較。 本研究透過實驗說明了不同模型的成效,而模型包含基準模型 Hierarchical Recurrent Encoder-Decoder (HRED)與 Generative Pre-training Transformer (GPT-2) 以及我們提出的 模型 Hierarchal Recurrent framework with History Dialogue (HRHD)模型和 Hierarchal Recurrent framework with Context Dialogue (HRCD) 模型,並利用自動化評估指標以 及人工評估。
多方面的比較我們提出的模型以及基準模型的成效,結果指出 HRHD 模型表現出 較優的性能,而且它在開放域數據集和任務導向的數據集上取得較佳的效果。此外, HRCD 模型優於基準模型 HRED 並接近 GPT-2 模型的效果。通過實驗和分析,我們可 以說明歷史對話和上下文對話的資訊是可以有效改善多輪次對話生成的性能。
摘要(英) Conversation agents are the general application of natural language generation and are regarded as a multi-turn dialogue system that keeps conversation more than one turn. However, the user expects that the conversation agents can recover the entire dialogue history information after several turns of dialogue, and generate meaningful, relevant, and consistent responses appropriately in the current turn of dialogue. Therefore, we propose an architecture based on the history and context information that aims to learn whether history dialogue or context dialogue information has more impact on the multi-turn dialogue.
Utilizing the hierarchal recurrent framework, we regard it as the real-world situation that happens in the multi-turn dialogue. We compare our models with previous studies on multi- turn dialogue generation tasks. Moreover, we first investigate the effectiveness of different models, including our baseline Hierarchical Recurrent Encoder-Decoder (HRED) and Generative Pre-training Transformer (GPT-2), and our proposed models: Hierarchal Recurrent framework with History Dialogue (HRHD) model and Hierarchal Recurrent framework with Context Dialogue (HRCD) model and then evaluate with the automatic evaluation metrics and the human evaluation metric.
The HRHD model is conceptually simple and entirely shows promising performance. It obtains remarkable results in the open-domain dataset and the task-oriented dataset. Furthermore, the HRCD model outperforms the baseline HRED model and is close to the baseline GPT-2 model. Through the experiments and analysis, we knew that the information of the history dialogue and the context dialogue both improve the performance of the multi-turn dialogue generation.
關鍵字(中) ★ 多輪對話生成
★ 分層循環網路
★ 字詞級注意力機制
★ 話語級注意力機制
★ 上下文嵌入詞
關鍵字(英) ★ multi-turn dialogue generation
★ hierarchical recurrent network
★ word-level attention
★ utterance-level attention
★ contextual embedding
論文目次 摘要......................................................... I
Abstract.................................................... II
Acknowledgement ............................................ III
Table of Contents .......................................... IV
List of Figures............................................. VI
List of Tables ............................................. VII
List of Appendixes ......................................... IX
1. Introduction ............................................ 1
Overview ................................................... 1
Motivation ................................................. 5
Objectives ................................................. 7
Thesis Organization......................................... 8
2. Related Works ........................................... 9
Dialogue Generation......................................... 9
Single-turn Dialogue Generation............................. 9
Multi-turn Dialogue Generation ............................. 13
Multi-turn Dialogue Generation with Attention Mechanism..... 16
Contextual Embedding ....................................... 24
BERT ....................................................... 24 ALBERT...................................................... 25
Evaluation Metrics.......................................... 26
Automatic Evaluation........................................ 26
Human Evaluation ........................................... 32
Chapter Summary ............................................ 36
3. Methodology ............................................. 37
Overview ................................................... 37
Model Architecture.......................................... 39
Hierarchal Recurrent framework with History Dialogue (HRHD). 39
Hierarchal Recurrent framework with Context Dialogue (HRCD). 46 Datasets.................................................... 51
Experiment Settings......................................... 55
Preprocessing............................................... 55
Dataset Settings ........................................... 56
Model Settings.............................................. 57
Experiment Process ......................................... 59
Experiment Design .......................................... 61
Experiment 1- Effectiveness of HRHD & HRCD models .......... 61
Experiment 2- Design of Human Evaluation ................... 62
4. Experiment Results ...................................... 64
Experiment 1- Effectiveness of HRHD & HRCD models .......... 64
Overview of Experiment 1 Result ............................ 64
Experiment 2- Design of Human Evaluation ................... 76
Overview of Experiment 2 Result ............................ 76
5. Conclusion .............................................. 79
Overall Summary............................................. 79
Contributions .............................................. 79
Limitations ................................................ 80
Future Research ............................................ 80
References ................................................. 81 Appendixes ................................................. 88
參考文獻 Ameixa, D., Coheur, L., Fialho, P., Quaresma, P., 2014. Luke, I am Your Father: Dealing with Out-of-Domain Requests by Using Movies Subtitles, in: Bickmore, T., Marsella, S., Sidner, C. (Eds.), Intelligent Virtual Agents, Lecture Notes in Computer Science. Springer International Publishing, Cham, pp. 13–21. https://doi.org/10.1007/978-3-319-09767-1_2
Amidei, J., Piwek, P., Willis, A., 2019. The use of rating and Likert scales in Natural Language Generation human evaluation tasks: A review and some recommendations, in: Proceedings of the 12th International Conference on Natural Language Generation. Association for Computational Linguistics, Tokyo, Japan, pp. 397–402. https://doi.org/10.18653/v1/W19- 8648
Bahdanau, D., Cho, K.H., Bengio, Y., 2015. Neural machine translation by jointly learning to align and translate. Presented at the 3rd International Conference on Learning Representations, ICLR 2015.
Banerjee, S., Lavie, A., 2005. METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgments, in: Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization. Association for Computational Linguistics, Ann Arbor, Michigan, pp. 65– 72.
Bhattacharyya, P., Mukundan, S., Shah, R., 2007. Some issues in automatic evaluation of english-hindi mt: more blues for bleu.
Budzianowski, P., Wen, T.-H., Tseng, B.-H., Casanueva, I., Ultes, S., Ramadan, O., Gašić, M., 2018. MultiWOZ - A Large-Scale Multi-Domain Wizard-of-Oz Dataset for Task-Oriented Dialogue Modelling, in: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Presented at the EMNLP 2018, Association for Computational Linguistics, Brussels, Belgium, pp. 5016–5026. https://doi.org/10.18653/v1/D18-1547
Byrne, B., Krishnamoorthi, K., Sankar, C., Neelakantan, A., Goodrich, B., Duckworth, D., Yavuz, S., Dubey, A., Kim, K.-Y., Cedilnik, A., 2019. Taskmaster-1: Toward a Realistic and Diverse Dialog Dataset, in: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Presented at the EMNLP-IJCNLP 2019, Association for Computational Linguistics, Hong Kong, China, pp. 4516–4525. https://doi.org/10.18653/v1/D19-1459
Chen, H., Liu, X., Yin, D., Tang, J., 2017. A Survey on Dialogue Systems: Recent Advances and New Frontiers. ACM SIGKDD Explor. Newsl. 19, 25–35. https://doi.org/10.1145/3166054.3166058
Danescu-Niculescu-Mizil, C., Lee, L., 2011. Chameleons in Imagined Conversations: A New Approach to Understanding Coordination of Linguistic Style in Dialogs, in: Proceedings of the 2nd Workshop on Cognitive Modeling and Computational Linguistics. Association for Computational Linguistics, Portland, Oregon, USA, pp. 76–87.
Deemter, K. van, 2016. Computational Models of Referring: A Study in Cognitive Science. MIT Press, Cambridge, MA, USA.
Devlin, J., Chang, M.-W., Lee, K., Toutanova, K., 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, in: Proceedings of the 2019 Conference of the North. Presented at the Proceedings of the 2019 Conference of the North, Association for Computational Linguistics, Minneapolis, Minnesota, pp. 4171–4186. https://doi.org/10.18653/v1/N19-1423
Forgues, G., Pineau, J., 2014. Bootstrapping Dialog Systems with Word Embeddings [WWW Document]. URL https://www.semanticscholar.org/paper/Bootstrapping-Dialog-Systems- with-Word-Embeddings-Forgues- Pineau/eb5f6ea7bbb7e06a4cd107544921979722bbd5ae (accessed 6.6.22).
Godfrey, John J., Holliman, Edward, 1993. Switchboard-1 Release 2. https://doi.org/10.35111/SW3H-RW02
Henderson, M., Vulić, I., Gerz, D., Casanueva, I., Budzianowski, P., Coope, S., Spithourakis, G., Wen, T.-H., Mrkšić, N., Su, P.-H., 2019. Training Neural Response Selection for Task- Oriented Dialogue Systems, in: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Presented at the ACL 2019, Association for Computational Linguistics, Florence, Italy, pp. 5392–5404. https://doi.org/10.18653/v1/P19-1536
Hendrycks, D., Gimpel, K., 2020. Gaussian Error Linear Units (GELUs) (No. arXiv:1606.08415). arXiv. https://doi.org/10.48550/arXiv.1606.08415
Kong, Y., Zhang, L., Ma, C., Cao, C., 2021. HSAN: A Hierarchical Self-Attention Network for Multi-Turn Dialogue Generation, in: ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Presented at the ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 7433–7437. https://doi.org/10.1109/ICASSP39728.2021.9413753
Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R., 2020. ALBERT: A Lite BERT for Self-supervised Learning of Language Representations. Presented at the Eighth International Conference on Learning Representations.
Landauer, T.K., Dumais, S.T., 1997. A solution to Plato’s problem: The latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychol. Rev. 104, 211– 240. https://doi.org/10.1037/0033-295X.104.2.211
Li, J., Galley, M., Brockett, C., Gao, J., Dolan, B., 2016a. A Diversity-Promoting Objective Function for Neural Conversation Models, in: Proceedings of the 2016 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Presented at the NAACL-HLT 2016, Association for Computational Linguistics, San Diego, California, pp. 110–119. https://doi.org/10.18653/v1/N16-1014
Li, J., Monroe, W., Ritter, A., Jurafsky, D., Galley, M., Gao, J., 2016b. Deep Reinforcement Learning for Dialogue Generation, in: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Presented at the EMNLP 2016, Association for Computational Linguistics, Austin, Texas, pp. 1192–1202. https://doi.org/10.18653/v1/D16-1127
Li, Y., Su, H., Shen, X., Li, W., Cao, Z., Niu, S., 2017. DailyDialog: A Manually Labelled Multi- turn Dialogue Dataset, in: Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Presented at the IJCNLP 2017, Asian Federation of Natural Language Processing, Taipei, Taiwan, pp. 986–995.
Li, Z., Kiseleva, J., de Rijke, M., 2018. Dialogue Generation: From Imitation Learning to Inverse Reinforcement Learning. ArXiv181203509 Cs.
Lin, C.-Y., 2004. ROUGE: A Package for Automatic Evaluation of Summaries, in: Text Summarization Branches Out. Association for Computational Linguistics, Barcelona, Spain, pp. 74–81.
Liu, C.-W., Lowe, R., Serban, I., Noseworthy, M., Charlin, L., Pineau, J., 2016. How NOT To Evaluate Your Dialogue System: An Empirical Study of Unsupervised Evaluation Metrics for Dialogue Response Generation, in: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Presented at the EMNLP 2016, Association for Computational Linguistics, Austin, Texas, pp. 2122–2132. https://doi.org/10.18653/v1/D16-1230
Liu, Q., Kusner, M.J., Blunsom, P., 2020. A Survey on Contextual Embeddings, arXiv e-prints.
Lowe, R., Pow, N., Serban, I., Pineau, J., 2015. The Ubuntu Dialogue Corpus: A Large Dataset for Research in Unstructured Multi-Turn Dialogue Systems, in: Proceedings of the 16th Annual Meeting of the Special Interest Group on Discourse and Dialogue. Association for Computational Linguistics, Prague, Czech Republic, pp. 285–294. https://doi.org/10.18653/v1/W15-4640
Luong, T., Pham, H., Manning, C.D., 2015. Effective Approaches to Attention-based Neural Machine Translation, in: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Presented at the EMNLP 2015, Association for Computational Linguistics, Lisbon, Portugal, pp. 1412–1421. https://doi.org/10.18653/v1/D15-1166
Ma, Z., Du, B., Shen, J., Yang, R., Wan, J., 2020. An Encoding Mechanism for Seq2Seq based Multi-Turn Sentimental Dialogue Generation Model. Procedia Comput. Sci., 2019 International Conference on Identification, Information and Knowledge in the Internet of
Things 174, 412–418. https://doi.org/10.1016/j.procs.2020.06.108
Novikova, J., Dušek, O., Rieser, V., 2018. RankME: Reliable Human Ratings for Natural Language Generation, in: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers). Presented at the NAACL-HLT 2018, Association for Computational Linguistics, New Orleans, Louisiana, pp. 72–78. https://doi.org/10.18653/v1/N18-2012
Olabiyi, O., Salimov, A.O., Khazane, A., Mueller, E., 2019. Multi-turn Dialogue Response Generation in an Adversarial Learning Framework, in: Proceedings of the First Workshop on NLP for Conversational AI. Association for Computational Linguistics, Florence, Italy, pp. 121–132. https://doi.org/10.18653/v1/W19-4114
Oluwatobi, O., Mueller, E., 2020. DLGNet: A Transformer-based Model for Dialogue Response Generation, in: Proceedings of the 2nd Workshop on Natural Language Processing for Conversational AI. Association for Computational Linguistics, Online, pp. 54–62. https://doi.org/10.18653/v1/2020.nlp4convai-1.7
Papineni, K., Roukos, S., Ward, T., Zhu, W.-J., 2002. Bleu: a Method for Automatic Evaluation of Machine Translation, in: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics. Presented at the ACL 2002, Association for Computational Linguistics, Philadelphia, Pennsylvania, USA, pp. 311–318. https://doi.org/10.3115/1073083.1073135
Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., Zettlemoyer, L., 2018. Deep Contextualized Word Representations, in: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Presented at the Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), Association for Computational Linguistics, New Orleans, Louisiana, pp. 2227–2237. https://doi.org/10.18653/v1/N18-1202
Pietquin, O., Hastie, H., 2013. A survey on metrics for the evaluation of user simulations. Knowl. Eng. Rev. 28, 59–73. https://doi.org/10.1017/S0269888912000343
Polatidis, N., 2014. Chatbot for admissions. ArXiv14086762 Cs.
Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., 2018. Improving Language Understanding by Generative Pre-Training 12.
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., 2019. Language models are unsupervised multitask learners. OpenAI Blog 1, 9.
Reiter, E., Belz, A., 2009. An Investigation into the Validity of Some Metrics for Automatically Evaluating Natural Language Generation Systems. Comput. Linguist. 35, 529–558.
https://doi.org/10.1162/coli.2009.35.4.35405
Ritter, A., Cherry, C., Dolan, B., 2010. Unsupervised Modeling of Twitter Conversations, in: Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Presented at the NAACL-HLT 2010, Association for Computational Linguistics, Los Angeles, California, pp. 172–180.
Ritter, A., Cherry, C., Dolan, W.B., 2011. Data-Driven Response Generation in Social Media, in: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing. Presented at the EMNLP 2011, Association for Computational Linguistics, Edinburgh, Scotland, UK., pp. 583–593.
Roller, S., Dinan, E., Goyal, N., Ju, D., Williamson, M., Liu, Y., Xu, J., Ott, M., Smith, E.M., Boureau, Y.-L., Weston, J., 2021. Recipes for Building an Open-Domain Chatbot, in: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume. Presented at the EACL 2021, Association for Computational Linguistics, Online, pp. 300–325. https://doi.org/10.18653/v1/2021.eacl- main.24
Rus, V., Lintean, M., 2012. A Comparison of Greedy and Optimal Assessment of Natural Language Student Input Using Word-to-Word Similarity Metrics, in: Proceedings of the Seventh Workshop on Building Educational Applications Using NLP. Association for Computational Linguistics, Montréal, Canada, pp. 157–162.
Serban, I., Sordoni, A., Bengio, Y., Courville, A., Pineau, J., 2016. Building End-To-End Dialogue Systems Using Generative Hierarchical Neural Network Models. Proc. AAAI Conf. Artif. Intell. 30.
Serban, I., Sordoni, A., Lowe, R., Charlin, L., Pineau, J., Courville, A., Bengio, Y., 2017. A Hierarchical Latent Variable Encoder-Decoder Model for Generating Dialogues. Proc. AAAI Conf. Artif. Intell. 31.
Shang, L., Lu, Z., Li, H., 2015. Neural Responding Machine for Short-Text Conversation, in: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Presented at the ACL-IJCNLP 2015, Association for Computational Linguistics, Beijing, China, pp. 1577–1586. https://doi.org/10.3115/v1/P15-1152
Shen, L., Zhan, H., Shen, X., Feng, Y., 2021. Learning to Select Context in a Hierarchical and Global Perspective for Open-Domain Dialogue Generation, in: ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Presented at the ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 7438–7442. https://doi.org/10.1109/ICASSP39728.2021.9414730
Sordoni, A., Bengio, Y., Vahabi, H., Lioma, C., Grue Simonsen, J., Nie, J.-Y., 2015. A Hierarchical Recurrent Encoder-Decoder for Generative Context-Aware Query
Suggestion, in: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, CIKM ’15. Association for Computing Machinery, New York, NY, USA, pp. 553–562. https://doi.org/10.1145/2806416.2806493
Su, H., Shen, X., Hu, P., Li, W., Chen, Y., 2018. Dialogue Generation With GAN. Proc. AAAI Conf. Artif. Intell. 32.
Sutskever, I., Martens, J., Hinton, G.E., 2011. Generating Text with Recurrent Neural Networks. Presented at the ICML.
Sutskever, I., Vinyals, O., Le, Q.V., 2014. Sequence to Sequence Learning with Neural Networks, in: Advances in Neural Information Processing Systems. Curran Associates, Inc.
Tian, Z., Yan, R., Mou, L., Song, Y., Feng, Y., Zhao, D., 2017. How to Make Context More Useful? An Empirical Study on Context-Aware Neural Conversational Models, in: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Presented at the ACL 2017, Association for Computational Linguistics, Vancouver, Canada, pp. 231–236. https://doi.org/10.18653/v1/P17-2036
Tiedemann, J., 2009. News from OPUS — A collection of multilingual parallel corpora with tools and interfaces. https://doi.org/10.1075/cilt.309.19tie
van Deemter, K., Sun, L., Sybesma, R., Li, X., Chen, B., Yang, M., 2017. Investigating the content and form of referring expressions in Mandarin: introducing the Mtuna corpus, in: Proceedings of the 10th International Conference on Natural Language Generation. Association for Computational Linguistics, Santiago de Compostela, Spain, pp. 213–217. https://doi.org/10.18653/v1/W17-3532
van der Lee, C., Gatt, A., van Miltenburg, E., Krahmer, E., 2021. Human evaluation of automatically generated text: Current trends and best practice guidelines. Comput. Speech Lang. 67, 101151. https://doi.org/10.1016/j.csl.2020.101151
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I., 2017. Attention is All you Need, in: Advances in Neural Information Processing Systems. Curran Associates, Inc.
Vinyals, O., Le, Q., 2015. A Neural Conversational Model. ArXiv150605869 Cs.
Wang, H., Lu, Z., Li, H., Chen, E., 2013. A Dataset for Research on Short-Text Conversations, in: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Presented at the EMNLP 2013, Association for Computational Linguistics, Seattle, Washington, USA, pp. 935–945.
Wu, C., Ren, X., Luo, F., Sun, X., 2019. A Hierarchical Reinforced Sequence Operation Method for Unsupervised Text Style Transfer, in: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Presented at the ACL 2019, Association for Computational Linguistics, Florence, Italy, pp. 4873–4883.
https://doi.org/10.18653/v1/P19-1482
Wu, X., Martínez, A., Klyen, M., 2018. Dialog Generation Using Multi-Turn Reasoning Neural Networks, in: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). Presented at the NAACL-HLT 2018, Association for Computational Linguistics, New Orleans, Louisiana, pp. 2049–2059. https://doi.org/10.18653/v1/N18- 1186
Xing, C., Wu, W., Wu, Y., Liu, J., Huang, Y., Zhou, M., Ma, W.-Y., 2017. Topic aware neural response generation, in: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI’17. AAAI Press, San Francisco, California, USA, pp. 3351–3357.
Xing, C., Wu, Y., Wu, W., Huang, Y., Zhou, M., 2018. Hierarchical recurrent attention network for response generation, in: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence, AAAI’18/IAAI’18/EAAI’18. AAAI Press, New Orleans, Louisiana, USA, pp. 5610–5617.
Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R., Le, Q.V., 2019. XLNet: Generalized Autoregressive Pretraining for Language Understanding, in: Advances in Neural Information Processing Systems. Curran Associates, Inc.
Zhang, H., Lan, Y., Pang, L., Chen, H., Ding, Z., Yin, D., 2020. Modeling Topical Relevance for Multi-Turn Dialogue Generation. Presented at the Twenty-Ninth International Joint Conference on Artificial Intelligence, pp. 3737–3743. https://doi.org/10.24963/ijcai.2020/517
Zhang, H., Lan, Y., Pang, L., Guo, J., Cheng, X., 2019. ReCoSa: Detecting the Relevant Contexts with Self-Attention for Multi-turn Dialogue Generation, in: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Presented at the ACL 2019, Association for Computational Linguistics, Florence, Italy, pp. 3721–3730. https://doi.org/10.18653/v1/P19-1362
Zhang, S., Dinan, E., Urbanek, J., Szlam, A., Kiela, D., Weston, J., 2018. Personalizing Dialogue Agents: I have a dog, do you have pets too?, in: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Presented at the ACL 2018, Association for Computational Linguistics, Melbourne, Australia, pp. 2204–2213. https://doi.org/10.18653/v1/P18-1205
指導教授 柯士文(Shin-Wen Ke) 審核日期 2022-9-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明