博碩士論文 109423020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.239.95.36
姓名 夏淮柔(Huai-Jou Hsia)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 感知價值及隱私顧慮對智慧型語音助理的持續使用意圖之影響研究
(The Effects of Perceived Value and Privacy Concern on Continuance Intention of Using Intelligent Voice Assistant)
相關論文
★ 製藥業的成本會計評估研究─ 一個ABC成本制度的應用★ 一個保險業的資料採擷應用--業務員的薪酬制度分析
★ 農漁產品電子化交易中分類分級管理之研究★ 應用類神經網路建構壽險核保決策支援之研究
★ 企業導入ERP之關鍵成功因素-個案研究★ 體外診斷醫療器材滿足CE及GMP驗證要求之個案研
★ 企業資訊系統委外研究-以個案銀行為例★ DRAM月平均價格變動分析
★ 定期航運產業運價及運送時間對經營績效影響之研究-以某外商海運公司在台灣經營為例★ 以交通儲值卡作為電子支付工具的營運模式及可行性分析
★ 軟體公司能力成熟度評估★ 加速台灣海關的通關便捷化-提升行動化服務的解決方案
★ 以均勻度係數為預測晶圓良率指標之可行性分析-以國內某DRAM廠為例★ 某公司資訊部門變革失敗之探討
★ 資訊部門導入ITIL 管理機制之現況分析─ 以企業導入ITIL 服務支援為例★ 導入WCO SAFE 優質企業之可行性分析–以A航空公司為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 面對數位生活的普及,近年來智慧型語音助理的市場迅速成長,它可以提供資料查詢、行程安排、訊息傳送、控制物聯網設備、講笑話、唱歌等服務,而台灣目前較常使用的智慧型語音助理是Apple Siri與Google Assistant。不過自2018年歐盟執行一般資料保護規則後,人們開始意識到隱私資料的保護,而語音助理利用聲控可以提供便利性,但最主要的問題仍在於個人隱私,雖然語音助理是必須藉由特殊指令才可以被喚醒,但也無法保證語音助理不會在休眠模式當中持續地接收用戶資料。
本研究將探討消費者對於智慧型語音助理的持續使用意圖之影響因素,本研究模型是以期望確認理論與計畫行為理論作為基礎,另外再新增人格特質作為調節變數。本研究以問卷調查法進行,共蒐集996份的有效樣本,而統計方法使用SEM以檢驗本研究模型與假說。
經本研究證實,當消費者感知到使用語音助理服務可以提供娛樂價值或提升任務完成的效率時,用戶的持續使用意圖就會增加;另一方面,當消費者擔憂自己向語音助理揭露的個人隱私資料可能被不當使用時,用戶的持續使用意圖就會減少。此外,本研究也證實,具有好奇心的人格特質確實可以調節感知價值對持續使用意圖的影響;而具有神經質的人格特質也會調節隱私顧慮對持續使用意圖的影響。
摘要(英) Facing the proliferation of “digital life,” the market of intelligent voice assistant has grown rapidly in recent years. It can provide assistance in data query, scheduling, message transmission, control of IoT devices, telling jokes, and singing, among others. The most commonly used voice assistance applications s in Taiwan are Apple Siri and Google Assistant. However, since the EU implemented the General Data Protection Regulations in 2018, people have become aware of the protection of privacy data. Voice assistant can provide convenience, but a main concern is still personal privacy. Although voice assistant can only be awakened by special commands, there is no guarantee that the voice assistant does not collect data in dormancy mode.
This study attempts to look into the influencing factors of continuance usage intention by voice assistant users. The research model is based on the Expectation Confirmation Theory and Theory of Planned Behavior, with personality trait as moderators. This study was conducted through a questionnaire survey, and a total of 996 valid samples was collected. SEM is employed as the major data analysis tool.
Results reveal that when users perceive that voice assistant can provide entertainment value or improve the efficiency of task, their continued use intentions are higher; on the other hand, when users worry about disclosing personal data that may be improperly used, their continuance usage intentions are reduced. In addition, this study also confirmed that curiosity, a personality trait, does moderate the influence of perceived value on continuance using intention, while neuroticism, another personality trait, moderates the influence of privacy concern on continuance using intention.
關鍵字(中) ★ 智慧型語音助理
★ 感知價值
★ 隱私顧慮
★ 持續使用意圖
★ 期望確認理論
★ 好奇心
★ 神經質
關鍵字(英) ★ Intelligent Voice Assistant
★ Perceived Value
★ Privacy Concern
★ Continuance Usage Intention
★ Expectation Confirmation Theory
★ Curiosity
★ Neuroticism
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 vii
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機 3
1-3 研究目的 4
第二章 文獻探討 5
2-1 語音助理 5
2-2 計畫行為理論 7
2-3 期望確認理論 8
2-4 感知價值 10
2-5 感知隱私風險 11
2-6 隱私顧慮 12
2-7 人格特質 13
第三章 研究方法 16
3-1 研究架構與假說 16
3-2 變數操作型定義 21
3-3 研究設計 29
第四章 資料分析 32
4-1 敘述性統計分析 32
4-2 測量模型檢驗 35
4-3 結構模型檢驗 42
4-4 調節效果 48
4-5 人口樣本特徵對於持續使用意圖之影響 52
4-6 小結 55
第五章 結論與建議 57
5-1 研究結果 57
5-2 學術意涵 60
5-3 管理意涵 62
5-4 研究限制與建議 65
參考文獻 67
英文文獻 67
中文文獻 75
附錄一 問卷設計 76
參考文獻 Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211.
Alepis, E., & Patsakis, C. (2017). Monkey says, monkey does: security and privacy on voice assistants. IEEE Access, 5, 17841–17851.
Allport, G. W. (1961). Pattern and Growth in Personality. Holt, Rinehart, & Winston, New York.
Anderson, E. W., & Sullivan, M. W. (1993). The antecedents and consequences of customer satisfaction for firms. Marketing Science, 12(2), 125–143.
Andrade, E. B., Kaltcheva, V., & Weitz, B. (2002). Self-disclosure on the web: the impact of privacy policy, reward, and company reputation. Advances in Consumer Research (Vol. 29), 350–353.
Babin, B. J., Darden, W. R., & Griffin, M. (1994). Work and/or fun: measuring hedonic and utilitarian shopping value. Journal of Consumer Research, 20(4), 644–656.
Baird, I. S., & Thomas, H. (1985). Toward a contingency model of strategic risk taking. Academy of Management Review, 10(2), 230–243.
Bauer, R. A. (1960). Consumer behavior as risk taking. In Dynamic Marketing for a Changing World, 389–398. American Marketing Association, Chicago.
Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238.
Bentler, P. M. (1995). EQS Structural Equations Program Manual. Multivariate Software, Encino, CA.
Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88(3), 588.
Bhattacherjee, A. (2001a). Understanding information systems continuance: an expectation-confirmation model. MIS Quarterly, 25(3), 351–370.
Bhattacherjee, A. (2001b). An empirical analysis of the antecedents of electronic commerce service continuance. Decision Support Systems, 32(2), 201–214.
Bridges, E., & Florsheim, R. (2008). Hedonic and utilitarian shopping goals: the online experience. Journal of Business Research, 61(4), 309–314.
Broder, A. (2018). A call to arms: embrace assistive AI systems! In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, 1.
Browne, M. W., & Mels, G. (1990). RAMONA PC: User’s Guide. Department of Statistics, University of South Africa.
Chang, C. (2004). The interplay of product class knowledge and trial experience in attitude formation. Journal of Advertising, 33(1), 83–92.
Chatzoglou, P., Chatzoudes, D., Ioakeimidou, D., & Tokoutsi, A. (2020). Generation Z: factors affecting the use of social networking sites. In 2020 15th International Workshop on Semantic and Social Media Adaptation and Personalization, 1–6. IEEE.
Chiu, C. M., Chiu, C. S., & Chang, H. C. (2007). Examining the integrated influence of fairness and quality on learners’ satisfaction and web‐based learning continuance intention. Information Systems Journal, 17(3), 271–287.
Chopra, S., & Chivukula, S. (2017). My phone assistant should know I am an Indian: influencing factors for adoption of assistive agents. In Proceedings of the 19th International Conference on Human-Computer Interaction with Mobile Devices and Services, 1–8.
Correa, T., Hinsley, A. W., & De Zuniga, H. G. (2010). Who interacts on the web?: the intersection of users’ personality and social media use. Computers in Human Behavior, 26(2), 247–253.
Costa Jr, P. T., & McCrae, R. R. (1992). Four ways five factors are basic. Personality and Individual Differences, 13(6), 653–665.
ABI Research. (2020). COVID-19 cuts smart home growth by US$14 billion in 2020, but drives future change. ABI Research. Retrieved May 23, 2022, from https://www.abiresearch.com/press/covid-19-cuts-smart-home-growth-us14-billion-2020-drives-future-change/.
Crespo, Á. H., Del Bosque, I. R., & de los Salmones Sánchez, M. G. (2009). The influence of perceived risk on Internet shopping behavior: a multidimensional perspective. Journal of Risk Research, 12(2), 259–277.
Csikszentmihalyi, M. (2000). Beyond boredom and anxiety. Jossey-Bass, San Francisco.
Dabholkar, P. A., Shepherd, C. D., & Thorpe, D. I. (2000). A comprehensive framework for service quality: an investigation of critical conceptual and measurement issues through a longitudinal study. Journal of Retailing, 76(2), 139–173.
Darley, J. M., Glucksberg, S., & Kinchla, R. A. (1991). Psychology (5th ed.). Prentice Hall, New Jersey.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 319–340.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35(8), 982–1003.
Dawson, S., Bloch, P. H., & Ridgway, N. M. (2002). Shopping motives, emotional states, and retail outcomes. In Retailing: The Environments of Retailing, 65–81. Routledge, London.
Day, D. V., & Silverman, S. B. (1989). Personality and job performance: evidence of incremental validity. Personnel Psychology, 42(1), 25–36.
Diefenbach, S., Kolb, N., & Hassenzahl, M. (2014). The hedonic in human-computer interaction: history, contributions, and future research directions. In Proceedings of the 2014 Conference on Designing Interactive Systems, 305–314.
Dinev, T., & Hart, P. (2006). An extended privacy calculus model for e-commerce transactions. Information Systems Research, 17(1), 61–80.
Dinev, T., Xu, H., Smith, J. H., & Hart, P. (2013). Information privacy and correlates: an empirical attempt to bridge and distinguish privacy-related concepts. European Journal of Information Systems, 22(3), 295–316.
Drennan, J., & Sullivan Mort, G. (2003). Examination of the influence of personal attributes on consumer use of m-services. In Proceedings of the 2003 Australian and New Zealand Marketing Academy Conference, 809–817. Australian and New Zealand Marketing Academy, Adelaide.
Ducoffe, R. H. (1996). Advertising value and advertising on the web-blog@ management. Journal of Advertising Research, 36(5), 21–32.
Feng, H., Fawaz, K., & Shin, K. G. (2017). Continuous authentication for voice assistants. In Proceedings of the 23rd Annual International Conference on Mobile Computing and Networking, 343–355.
Fishbein, M., & Ajzen, I. (1977). Belief, attitude, intention, and behavior: an introduction to theory and research. Philosophy and Rhetoric, 10(2).
Fornell, C. (1992). A national customer satisfaction barometer: the Swedish experience. Journal of Marketing, 56(1), 6–21.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50.
Ghosh, C., & Eastin, M. S. (2020). Understanding users’ relationship with voice assistants and how it affects privacy concerns and information disclosure behavior. International Conference on Human-Computer Interaction, 381–392.
Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1998). Multivariate data analysis, 3, 98–99. Prentice Hall, New Jersey.
Harbich, S., & Auer, S. (2005). Rater bias: the influence of hedonic quality on usability questionnaires. IFIP Conference on Human-Computer Interaction, 1129–1133.
Hassenzahl, M., Platz, A., Burmester, M., & Lehner, K. (2000). Hedonic and ergonomic quality aspects determine a software’s appeal. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 201–208.
Hoffman, D. L., & Novak, T. P. (1996). Marketing in hypermedia computer-mediated environments: conceptual foundations. Journal of Marketing, 60(3), 50–68.
Hoy, M. B. (2018). Alexa, Siri, Cortana, and more: an introduction to voice assistants. Medical Reference Services Quarterly, 37(1), 81–88.
Huang, M. H. (2003). Designing website attributes to induce experiential encounters. Computers in Human Behavior, 19(4), 425–442.
Insider Intelligence. (2022). Voice assistants in 2022: usage, growth, and future of the AI voice assistant market. Insider Intelligence. Retrieved May 23, 2022, from https://www.insiderintelligence.com/insights/voice-assistants/.
Jacoby, J., & Kaplan, L. B. (1972). The components of perceived risk. Advances in Consumer Research, 3, 382–383.
Jeffs, M. (2018). OK Google, Siri, Alexa, Cortana; can you tell me some stats on voice search. Retrieved May 23, 2022, from https://edit.co.uk/blog/google-voice-search-stats-growth-trends/.
John, O. P., Donahue, E. M., & Kentle, R. L. (1991). Big five inventory. University of California, Berkeley.
Jung, T., Dieck, M., Rauschnabel, P., Ascenção, M., Tuominen, P., & Moilanen, T. (2018). Functional, hedonic or social? exploring antecedents and consequences of virtual reality rollercoaster usage. In Augmented Reality and Virtual Reality, 247–258. Springer.
Junglas, I. A., Johnson, N. A., & Spitzmüller, C. (2008). Personality traits and concern for privacy: an empirical study in the context of location-based services. European Journal of Information Systems, 17(4), 387–402.
Kaplan, D. (1990). Evaluating and modifying covariance structure models: a review and recommendation. Multivariate Behavioral Research, 25(2), 137–155.
Kashdan, T. B., Disabato, D. J., Goodman, F. R., & Naughton, C. (2018). The five dimensions of curiosity. Harvard Business Review, 96(5), 58–60.
Keith, M. J., Thompson, S. C., Hale, J., Lowry, P. B., & Greer, C. (2013). Information disclosure on mobile devices: re-examining privacy calculus with actual user behavior. International Journal of Human-Computer Studies, 71(12), 1163–1173.
Kim, D. J., Ferrin, D. L., & Rao, H. R. (2008). A trust-based consumer decision-making model in electronic commerce: the role of trust, perceived risk, and their antecedents. Decision Support Systems, 44(2), 544–564.
Kim, D. J., & Hwang, Y. (2012). A study of mobile internet user’s service quality perceptions from a user’s utilitarian and hedonic value tendency perspectives. Information Systems Frontiers, 14(2), 409–421.
Kuo, Y. F., Wu, C. M., & Deng, W. J. (2009). The relationships among service quality, perceived value, customer satisfaction, and post-purchase intention in mobile value-added services. Computers in Human Behavior, 25(4), 887–896.
Lee, S., & Choi, J. (2017). Enhancing user experience with conversational agent for movie recommendation: effects of self-disclosure and reciprocity. International Journal of Human-Computer Studies, 103, 95–105.
Lei, X., Tu, G. H., Liu, A. X., Li, C. Y., & Xie, T. (2018). The insecurity of home digital voice assistants-vulnerabilities, attacks and countermeasures. In 2018 IEEE Conference on Communications and Network Security, 1–9. IEEE.
Li, H., Sarathy, R., & Xu, H. (2011). The role of affect and cognition on online consumers’ decision to disclose personal information to unfamiliar online vendors. Decision Support Systems, 51(3), 434–445.
Lim, N. (2003). Consumers’ perceived risk: sources versus consequences. Electronic Commerce Research and Applications, 2(3), 216–228.
Limayem, M., Hirt, S. G., & Cheung, C. M. (2007). How habit limits the predictive power of intention: the case of information systems continuance. MIS Quarterly, 705–737.
Luarn, P., & Lin, H. H. (2005). Toward an understanding of the behavioral intention to use mobile banking. Computers in Human Behavior, 21(6), 873–891.
Luger, E., & Sellen, A. (2016). The gulf between user expectation and experience of conversational agents. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, 5286–5297.
Lwin, M., Wirtz, J., & Williams, J. D. (2007). Consumer online privacy concerns and responses: a power–responsibility equilibrium perspective. Journal of the Academy of Marketing Science, 35(4), 572–585.
MacIver, J., & Carmines, E. G. (1981). Unidimensional Scaling (Vol. 24). Sage, CA.
Malone, T. W. (1981). Toward a theory of intrinsically motivating instruction. Cognitive Science, 5(4), 333–369.
Mano, H., & Oliver, R. L. (1993). Assessing the dimensionality and structure of the consumption experience: evaluation, feeling, and satisfaction. Journal of Consumer Research, 20(3), 451–466.
McLean, G., & Osei-Frimpong, K. (2019). Hey Alexa … examine the variables influencing the use of artificial intelligent in-home voice assistants. Computers in Human Behavior, 99, 28–37.
Murray, K. B., & Schlacter, J. L. (1990). The impact of services versus goods on consumers’ assessment of perceived risk and variability. Journal of the Academy of Marketing Science, 18(1), 51–65.
Nascimento, B., Oliveira, T., & Tam, C. (2018). Wearable technology: what explains continuance intention in smartwatches? Journal of Retailing and Consumer Services, 43, 157–169.
Nunally, J. C. (1978). Psychometric Theory (2nd ed.). McGraw Hill, New York.
Oliver, R. L. (1980). A cognitive model of the antecedents and consequences of satisfaction decisions. Journal of Marketing Research, 17(4), 460–469.
Oliver, R. L., & DeSarbo, W. S. (1988). Response determinants in satisfaction judgments. Journal of Consumer Research, 14(4), 495–507.
Oliver, R. L., & Swan, J. E. (1989). Equity and disconfirmation perceptions as influences on merchant and product satisfaction. Journal of Consumer Research, 16(3), 372–383.
Ryan, R. M., & Deci, E. L. (2000). Intrinsic and extrinsic motivations: classic definitions and new directions. Contemporary Educational Psychology, 25(1), 54–67.
Taylor, S., & Todd, P. (1995). Assessing IT usage: the role of prior experience. MIS Quarterly, 19(4), 561–570.
Thong, J. Y., Hong, S. J., & Tam, K. Y. (2006). The effects of post-adoption beliefs on the expectation-confirmation model for information technology continuance. International Journal of Human-Computer Studies, 64(9), 799–810.
Tse, D. K., & Wilton, P. C. (1988). Models of consumer satisfaction formation: an extension. Journal of Marketing Research, 25(2), 204–212.
Turel, O., & Serenko, A. (2006). Satisfaction with mobile services in Canada: an empirical investigation. Telecommunications Policy, 30(5–6), 314–331.
Vallerand, R. J. (1997). Toward a hierarchical model of intrinsic and extrinsic motivation. In Advances in Experimental Social Psychology (Vol. 29), 271–360. Academic Press, New York.
Venkatesh, V., & Morris, M. G. (2000). Why don’t men ever stop to ask for directions? gender, social influence, and their role in technology acceptance and usage behavior. MIS Quarterly, 24(1), 115–139.
ReportLinker. (2022). Voice assistant application global market report 2022. ReportLinker. Retrieved May 23, 2022, from https://www.reportlinker.com/p06233734/Voice-Assistant-Application-Global-Market-Report.html.
Wakefield, K. L., & Baker, J. (1998). Excitement at the mall: determinants and effects on shopping response. Journal of Retailing, 74(4), 515–539.
Wang, S. S. (2013). Personality traits, life satisfaction, and Facebook check-ins. Cyberpsychology, Behavior, and Social Networking, 16(12), 870–877.
Whang, C. (2018). Voice Shopping: The Effect of the Consumer-Voice Assistant Parasocial Relationship on the Consumer’s Perception and Decision Making. The University of Minnesota Digital Conservancy.
Woodside JR, A. G. (1968). Group Influence and Consumer Risk Taking: An Experimental Study. The Pennsylvania State University.
Yang, H., & Lee, H. (2019). Understanding user behavior of virtual personal assistant devices. Information Systems and E-Business Management, 17(1), 65–87.
Yuan, C., Zhang, C., & Wang, S. (2022). Social anxiety as a moderator in consumer willingness to accept AI assistants based on utilitarian and hedonic values. Journal of Retailing and Consumer Services, 65, 1–11.
Zeithaml, V. A. (1988). Consumer perceptions of price, quality, and value: a means-end model and synthesis of evidence. Journal of Marketing, 52(3), 2–22.
Zeng, S. Y., Wu, L. L., & Chen, H. G. (2009). Sharing private information online: the mediator effect of social exchange. In Proceedings of the 11th International Conference on Electronic Commerce, 231–239.
吳肇銘(1999)。影響網站使用意向之因素研究─以入門網站為例。國立中央大學資訊管理研究所博士論文,桃園市。
蕭文龍、郭庭伊(2010)。部落客持續使用部落格之研究:以整合期望確認,科技接受模式和個人因素觀點探討。電子商務學報,12(2),221–249。
台灣資策會產業情報研究所(2019)。語音助理主宰智慧家庭?。2022年5月23日,取自https://mic.iii.org.tw/industry.aspx?id=347。
指導教授 范錚強 審核日期 2022-6-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明