博碩士論文 109423024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:100.28.227.63
姓名 李佳穎(Chia-Ying Li)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 應用Selective Mechanism與BERT來協助企業自動分類消費者的問題反映
(Applying BERT and Selective Mechanism to Assist Enterprise in Online User-Problem Classification)
相關論文
★ 專案管理的溝通關鍵路徑探討─以某企業軟體專案為例★ 運用並探討會議流如何促進敏捷發展過程中團隊溝通與文件化:以T銀行系統開發為例
★ 專案化資訊服務中人力連續派遣決策模式之研究─以高鐵行控資訊設備維護為例★ 以組織正義觀點介入案件指派決策之研究
★ 應用協調理論建立系統軟體測試中問題改善之協作流程★ 應用案例式推理於問題管理系統之研究 -以筆記型電腦產品為例
★ 運用限制理論於多專案開發模式的人力資源配置之探討★ 應用會議流方法於軟體專案開發之個案研究:以翰昇科技公司為例
★ 多重專案、多期再規劃的軟體開發接案決策模式:以南亞科技資訊部門為例★ 會議導向敏捷軟體開發及系統設計:以大學畢業專題為例
★ 一種基於物件、屬性導向之變更影響分析方法於差異化產品設計★ 會議流方法對大學畢業專題的團隊合作品質影響之實驗研究
★ 實施敏捷式發展法於大學部畢業專題之 行動研究 – 以中央大學資管系為例★ 建立一個用來評核自然語言需求品質的線上資訊系統
★ 結合本體論與模糊分析網路程序法於軟體測試之風險與風險關聯辨識★ 在軟體反向工程中針對UML結構模型圖之線上品質評核系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-1以後開放)
摘要(中) 現今企業的營運與服務隨著資訊科技的發展,逐漸轉往數位的運營模式,與此同時產生傳統人工方式難以估量之大量資料,若能將資料妥善應用,將能使企業之營運更上一層樓。本研究針對實際企業之使用者問題回饋加以設計系統,透過該公司先前蒐集並且經過專家整理後的歷史資料,應用至深度學習的模型並開發一套使用者問題反映自動分類系統。系統結合 Selective mechanism 架構來提升現有模型於篩選文意的能力,更進一步提升模型於文本分類上的效能,以此方法來減少企業未來在面對相似資料上所花費的歸檔成本。透過實際案例驗證,本研究開發之模型(Selective mechanism架構結合 〖BERT〗_base)相較於原始 〖BERT〗_base於Accuracy增加了4%、Precision增加了3%、Recall增加了4%、F1-score增加了4%,驗證了Selective mechanism確實能提升 〖BERT〗_base 模型於文本分類上的效能。且同時在實驗中也驗證Text Augmentation 於資料分布不平均的狀況下,仍能夠讓模型於epoch數量更少的狀況下更快達到收斂,並在epoch增加時避免過度學習(Overfitting)的狀況。最終將模型串接至Web-based的資訊系統上,並透過公司內部與資料相同領域的專家來驗證此系統,而結果表明使用者對於此系統大多抱持正向態度。
摘要(英) Nowadays, there is a rising number of enterprises and agencies using e-service in their daily operations or other services. Hence, there are more digital data will be generated than before. Dealing with these huge digital data may cost a lot of human resources and time, if they sort these digital data by human as the way they used to do. In order to solve aforementioned problem, this study designed a system to classify online user problem automatically, through applying a real enterprise’s historical data to a deep learning model. Then, this study tries to improve the ready-made model’s capability in filtering textual meaning by combine selective mechanism architecture to the model. Furthermore, it may also improve the model’s efficacy in text classification task, and reduce the cost for enterprises to deal with the similar data in future. Then, the author designed some experiments for verifying the model which is proposed by this study. The 〖BERT〗_base model which combine selective mechanism obtains 4% improvement in accuracy, 3% improvement in precision, 4% improvement in recall and 4% improvement in f1-score over the 〖BERT〗_base. That is, this study verify that combing 〖BERT〗_base with selective mechanism can improve 〖BERT〗_base efficacy in text classification. Moreover, this study also verifies that using text augmentation method with imbalance dataset would make convergence be achieved in a lower number of epoch and reduce the effects of overfitting in increasing number of epoch. Finally, this study concatenates the proposed model and a web-based application. In addition, this study would verify the system via survey feedback which was from experts who work for enterprise and have background knowledge of the same area of the dataset. The result shows that most users have a positive attitude towards the system.
關鍵字(中) ★ Bidirectional Encoder Representations from Transformers
★ 自然語言處理
★ 文本分類
★ Selective mechanism
★ Text augmentation
關鍵字(英) ★ BERT (Bidirectional Encoder Representations from Transformers)
★ Natural Language Processing (NLP)
★ Text classification
★ Selective mechanism
★ Text augmentation
論文目次 摘要 viii
Abstract ix
圖目錄 xii
表目錄 xiii
第一章、緒論 1
1-1 研究背景 1
1-2 研究動機與問題 2
1-3 研究目的 3
1-4 論文架構 5
第二章、文獻探討 6
2-1 文本分類 6
2-2 Bidirectional Encoder Representations from Transformers (BERT) 7
2-3 Selective Mechanism 9
2-4 Text Augmentation 11
2-5 將使用者回饋進行分類的相關研究 11
第三章、 系統設計 13
3-1 研究流程 13
3-2 前處理 14
 刪除資料量稀少的類別 14
 刪除與類別與欄位資料不相關的資料 14
 刪除停用字、常用符號 14
3-3 將Selective Mechanism結合至 BERT 15
3-4 模型評估 17
第四章、 實驗與系統實作 20
4-1 MBQF資料集前處理 21
4-1-1 MBQF資料刪除 21
4-1-2 將欄位合併 27
4-1-3 MBQF資料集切分 27
4-2 模型實驗 28
4-2-1 實驗一、BERTbase + Selective Mechanism 與其他模型之比較 29
4-2-2 實驗二、Text Augmentation不同大小的影響 32
4-3 系統實作 36
4-3-1 問題反映分類系統 37
4-3-2 系統實際畫面 40
五、系統驗證 43
5-1 成效分析:資訊系統成功模式 43
5-1-1問卷設計 44
5-1-2問卷結果 47
5-2 成效分析:模型 48
六、結論與未來研究方向 51
6-1 研究貢獻 51
6-2 研究限制 52
6-3 未來研究方向 52
參考文獻 53
參考文獻 Al-Fraihat, D., Joy, M., Masa’deh, R., & Sinclair, J. (2020). Evaluating E-learning systems success: An empirical study. Computers in Human Behavior, 102, 67–86. https://doi.org/10.1016/j.chb.2019.08.004
Alshibly, H. H. (2014). Evaluating E-HRM success: A Validation of the Information Systems Success Model. International Journal of Human Resource Studies, 4(3), 107–124. https://doi.org/10.5296/ijhrs.v4i3.5929
Bahdanau, D., Cho, K., & Bengio, Y. (2016). Neural Machine Translation by Jointly Learning to Align and Translate. ArXiv:1409.0473 [Cs, Stat]. http://arxiv.org/abs/1409.0473
Bailey, J. E., & Pearson, S. W. (1983). Development of a Tool for Measuring and Analyzing Computer User Satisfaction. Management Science, 29(5), 530–545. https://doi.org/10.1287/mnsc.29.5.530
Balaban, I., Mu, E., & Divjak, B. (2013). Development of an electronic Portfolio system success model: An information systems approach. Computers & Education, 60(1), 396–411. https://doi.org/10.1016/j.compedu.2012.06.013
Beltagy, I., Lo, K., & Cohan, A. (2019). SciBERT: A Pretrained Language Model for Scientific Text. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 3615–3620. https://doi.org/10.18653/v1/D19-1371
Bird, S., & Loper, E. (2004). NLTK: The Natural Language Toolkit. Proceedings of the ACL Interactive Poster and Demonstration Sessions, 214–217. https://aclanthology.org/P04-3031
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., … Amodei, D. (2020). Language Models are Few-Shot Learners. Advances in Neural Information Processing Systems, 33, 1877–1901. https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
Cao, J., & Lai, C. (2020). A Bilingual Multi-type Spam Detection Model Based on M-BERT. GLOBECOM 2020 - 2020 IEEE Global Communications Conference, 1–6. https://doi.org/10.1109/GLOBECOM42002.2020.9347970
Chang, H. H., Wang, Y.-H., & Yang, W.-Y. (2009). The impact of e-service quality, customer satisfaction and loyalty on e-marketing: Moderating effect of perceived value. Total Quality Management & Business Excellence, 20(4), 423–443. https://doi.org/10.1080/14783360902781923
David, R., Duke, J., Jain, A., Reddi, V. J., Jeffries, N., Li, J., Kreeger, N., Nappier, I., Natraj, M., Regev, S., Rhodes, R., Wang, T., & Warden, P. (2021). TensorFlow Lite Micro: Embedded Machine Learning on TinyML Systems (arXiv:2010.08678). arXiv. https://doi.org/10.48550/arXiv.2010.08678
de Araújo, A. F., & Marcacini, R. M. (2021). RE-BERT: Automatic extraction of software requirements from app reviews using BERT language model. Proceedings of the 36th Annual ACM Symposium on Applied Computing, 1321–1327. https://doi.org/10.1145/3412841.3442006
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. http://arxiv.org/abs/1810.04805
Elman, J. L. (1990). Finding Structure in Time. Cognitive Science, 14(2), 179–211. https://doi.org/10.1207/s15516709cog1402_1
Gao, Z., Feng, A., Song, X., & Wu, X. (2019). Target-Dependent Sentiment Classification With BERT. IEEE Access, 7, 154290–154299. https://doi.org/10.1109/ACCESS.2019.2946594
García, S., Ramírez-Gallego, S., Luengo, J., Benítez, J. M., & Herrera, F. (2016). Big data preprocessing: Methods and prospects. Big Data Analytics, 1(1), 9. https://doi.org/10.1186/s41044-016-0014-0
Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2017). LSTM: A Search Space Odyssey. IEEE Transactions on Neural Networks and Learning Systems, 28(10), 2222–2232. https://doi.org/10.1109/TNNLS.2016.2582924
Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
Islam, M. T., Huda, N., Baumber, A., Shumon, R., Zaman, A., Ali, F., Hossain, R., & Sahajwalla, V. (2021). A global review of consumer behavior towards e-waste and implications for the circular economy. Journal of Cleaner Production, 316, 128297. https://doi.org/10.1016/j.jclepro.2021.128297
Joshi, A., Kale, S., Chandel, S., & Pal, D. K. (2015). Likert Scale: Explored and Explained. Current Journal of Applied Science and Technology, 396–403. https://doi.org/10.9734/BJAST/2015/14975
Karita, S., Chen, N., Hayashi, T., Hori, T., Inaguma, H., Jiang, Z., Someki, M., Soplin, N. E. Y., Yamamoto, R., Wang, X., Watanabe, S., Yoshimura, T., & Zhang, W. (2019). A Comparative Study on Transformer vs RNN in Speech Applications. 2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU), 449–456. https://doi.org/10.1109/ASRU46091.2019.9003750
Kazhuparambil, S., & Kaushik, A. (2020). Cooking Is All About People: Comment Classification On Cookery Channels Using BERT and Classification Models (Malayalam-English Mix-Code). ArXiv:2007.04249 [Cs, Stat]. http://arxiv.org/abs/2007.04249
Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1746–1751. https://doi.org/10.3115/v1/D14-1181
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., & Kang, J. (2020). BioBERT: A pre-trained biomedical language representation model for biomedical text mining. Bioinformatics, 36(4), 1234–1240. https://doi.org/10.1093/bioinformatics/btz682
Li, Z., Shang, W., & Yan, M. (2016). News text classification model based on topic model. 2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS), 1–5. https://doi.org/10.1109/ICIS.2016.7550929
Ling, C., Yimin, L., & Lianlian, J. (2021). Fault Text Classification of Rotating Machine Based BERT. 2021 33rd Chinese Control and Decision Conference (CCDC), 6744–6750. https://doi.org/10.1109/CCDC52312.2021.9602286
Liu, C., Sheng, Y., Wei, Z., & Yang, Y.-Q. (2018). Research of Text Classification Based on Improved TF-IDF Algorithm. 2018 IEEE International Conference of Intelligent Robotic and Control Engineering (IRCE), 218–222. https://doi.org/10.1109/IRCE.2018.8492945
Liu, S., Le, F., Chakraborty, S., & Abdelzaher, T. (2021). On Exploring Attention-based Explanation for Transformer Models in Text Classification. 2021 IEEE International Conference on Big Data (Big Data), 1193–1203. https://doi.org/10.1109/BigData52589.2021.9671639
Marivate, V., & Sefara, T. (2020). Improving Short Text Classification Through Global Augmentation Methods. Machine Learning and Knowledge Extraction, 385–399. https://doi.org/10.1007/978-3-030-57321-8_21
Mekala, R. R., Irfan, A., Groen, E. C., Porter, A., & Lindvall, M. (2021). Classifying User Requirements from Online Feedback in Small Dataset Environments using Deep Learning. 2021 IEEE 29th International Requirements Engineering Conference (RE), 139–149. https://doi.org/10.1109/RE51729.2021.00020
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space. ArXiv:1301.3781 [Cs]. http://arxiv.org/abs/1301.3781
Miller, G. A. (1995). WordNet: A lexical database for English. Communications of the ACM, 38(11), 39–41. https://doi.org/10.1145/219717.219748
Nguyen, D. Q., Vu, T., & Tuan Nguyen, A. (2020). BERTweet: A pre-trained language model for English Tweets. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, 9–14. https://doi.org/10.18653/v1/2020.emnlp-demos.2
Palmer, A., Schneider, N., Schluter, N., Emerson, G., Herbelot, A., & Zhu, X. (2021, August). Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021). Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021). https://aclanthology.org/2021.semeval-1.0
Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L. (2018). Deep Contextualized Word Representations. Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), 2227–2237. https://doi.org/10.18653/v1/N18-1202
Rajpurkar, P., Zhang, J., Lopyrev, K., & Liang, P. (2016). SQuAD: 100,000+ Questions for Machine Comprehension of Text. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 2383–2392. https://doi.org/10.18653/v1/D16-1264
Stefanovic, D., Marjanovic, U., Delić, M., Culibrk, D., & Lalic, B. (2016). Assessing the success of e-government systems: An employee perspective. Information & Management, 53(6), 717–726. https://doi.org/10.1016/j.im.2016.02.007
Sun, C., Qiu, X., Xu, Y., & Huang, X. (2019). How to Fine-Tune BERT for Text Classification? Chinese Computational Linguistics, 194–206. https://doi.org/10.1007/978-3-030-32381-3_16
Taherdoost, H. (2016). Validity and Reliability of the Research Instrument; How to Test the Validation of a Questionnaire/Survey in a Research (SSRN Scholarly Paper No. 3205040). Social Science Research Network. https://doi.org/10.2139/ssrn.3205040
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is All you Need. Advances in Neural Information Processing Systems, 30. https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., & Bowman, S. (2018). GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding. Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, 353–355. https://doi.org/10.18653/v1/W18-5446
William H. Delone & Ephraim R. McLean. (2003). The DeLone and McLean Model of Information Systems Success: A Ten-Year Update. Journal of Management Information Systems, 19(4), 9–30. https://doi.org/10.1080/07421222.2003.11045748
Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y., Plu, J., Xu, C., Le Scao, T., Gugger, S., … Rush, A. (2020). Transformers: State-of-the-Art Natural Language Processing. Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, 38–45. https://doi.org/10.18653/v1/2020.emnlp-demos.6
Yang, J., Dou, Y., Xu, X., Ma, Y., & Tan, Y. (2021). A BERT and Topic Model Based Approach to reviews Requirements Analysis. 2021 14th International Symposium on Computational Intelligence and Design (ISCID), 387–392. https://doi.org/10.1109/ISCID52796.2021.00094
Yang, T.-Y., Yang, Y.-T., Chen, J.-R., & Lu, C.-C. (2019). Correlation between owner brand and firm value – Case study on a private brand in Taiwan. Asia Pacific Management Review, 24(3), 232–237. https://doi.org/10.1016/j.apmrv.2018.06.002
Yang, Y., UY, M. C. S., & Huang, A. (2020). FinBERT: A Pretrained Language Model for Financial Communications. ArXiv:2006.08097 [Cs]. http://arxiv.org/abs/2006.08097
Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). XLNet: Generalized Autoregressive Pretraining for Language Understanding. Advances in Neural Information Processing Systems, 32. https://papers.nips.cc/paper/2019/hash/dc6a7e655d7e5840e66733e9ee67cc69-Abstract.html
Zhou, Q., Yang, N., Wei, F., & Zhou, M. (2017). Selective Encoding for Abstractive Sentence Summarization. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 1095–1104. https://doi.org/10.18653/v1/P17-1101
Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R., Torralba, A., & Fidler, S. (2015). Aligning Books and Movies: Towards Story-Like Visual Explanations by Watching Movies and Reading Books. 19–27. https://doi.org/10.1109/ICCV.2015.11
指導教授 陳仲儼(Chung-Yang Chen) 審核日期 2022-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明