博碩士論文 109521039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.129.69.13
姓名 趙元晟(Yuan-Cheng Zhao)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 運用雙電極設計增強高速資料傳輸表現的單模 垂直共振腔面射型雷射小型陣列
(Dual Electrodes Design for the Enhancement of High-Speed Data Transmission in Single-Mode Vertical-Cavity Surface-Emitting Laser Mini Arrays)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文中,我們運用鋅擴散以及特殊的電極設計,有效改善類單模態(QSM)垂直共振腔面射型雷射(VCSEL)陣列的速度以及資料傳輸。我們在緊密的2X2 VCSEL陣列中加入兩個電極,其中一邊為直流注入,另一邊為較大的交流訊號調變。與單電極的2X2 VCSEL陣列相比,雙電極的VCSEL陣列在相同的總電流注入下(20mA),電光頻率響應有較大的阻尼以及較寬的頻寬(19 vs. 15G)。由此我們可以發現,雙電極可以改善元件在高速資料傳輸中的表現。
除此之外,元件還能夠擁有較大的光功率輸出(17mW@20mA)、維持類高斯遠場分布以及具有窄的發散角(半高寬(FWHM):10 o@20mA)。由此得知,本輪文提出雙電極設計在大幅提升元件動態表現時也沒有造成靜態表現的損失。
我們觀察雙電極與單電極總電流都為20mA的情況下,眼圖的品質達到大幅的改善。在32 Gbit/sec直接對接(back-to-back)資料傳輸中可以發現巨大的進步(jitter:1.5 vs2.8 ps)。不僅如此,在傳輸距離為500m進行眼圖的量測時,雙電極依然能夠維持25 Gbit/sec的眼圖品質,而單電極已經無法維持眼圖張開。
接著我們更進一步將啞鈴結構搭配雙電極設計提升至7x7陣列。不論是在靜態以及動態上都有明顯的改善在。在靜態表現上,雙電極設計能夠擁有更大的光功率輸出(47 vs. 33mW),並具有高斯遠場分佈以及擁有更窄的發散角(FWHM: 6.7o vs. 7.7 o)。在動態表現上,雙電極設計有更大的阻尼以及更寬的頻率響應(11 vs. 9GHz),這也使得雙電極在眼圖品質上有很大的進步(Jitter: 4.9 vs.5.8ps) 。因此我們可以推斷雙電極設計不僅可以用在小型陣列,也能在更大的陣列中展現出它的優勢。
摘要(英) In this work, a novel design for the electrodes in a qusi-single-mode (QSM) vertical-cavity surface-emitting laser (VCSEL) array with Zn-diffusion apertures inside is demonstrated to produce an effective improvement in the high-speed data transmission performance. By separating the electrodes in a compact 2×2 coupled QSM VCSEL array into two parts, one for pure dc current injection and the other for large ac signal modulation, a significant enhancement in the high-speed data transmission performance can be observed. Compared with the single electrode reference, which parallels 4 VCSEL units in the array, the demonstrated array with its separated electrode design exhibits greater dampening of electrical-optical (E-O) frequency response and a larger 3-dB E-O bandwidth (19 vs. 15 GHz) under the same amount of total bias current (20 mA). Moreover, this significant improvement in dynamic performance does not come at the cost of any degradation in the static performance in terms of the maximum QSM optical output power (17 mW @ 20 mA) and the Gaussian-like optical far-field pattern which has a narrow divergence angle (full-width half maximum (FWHM): 10o at 20 mA). The advantages of the separated electrode design lead to a much better quality of 32 Gbit/sec eye-opening as compared to that of the reference device (jitter: 1.5 vs. 2.8 ps) and error-free 25 Gbit/sec transmissions over a 500 m multi-mode fiber has been achieved under a moderate total bias current of 20 mA. Finally, we increased the number of emitters in our dumb-bell structure mesas having dual electrode to 7×7 array, we can still observe some significant improvement in its static and dynamic performances. With respect to static performance, the optical output power has significant improvement (47mW vs. 32mW) and far-field pattern has narrower divergence angle (FWHM: 6.7 o vs. 7.7 o). Regarding with dynamic performance, more dampened and wider E-O frequency response (11 vs. 9GHz) having better eye-pattern quality (jitter: 4.9 vs. 5.8ps) can be observed. From these we can conclude that our novel design for the electrodes can be applicable for both small and large scale arrays.
關鍵字(中) ★ 垂直共振腔面射型雷射
★ 凸台
★ 空間電洞不足效應
★ 滾落
關鍵字(英) ★ VCSEL
★ Mesa
★ spatial hole burning effect
★ roll-off
論文目次 目錄
摘 要 I
Abstract III
致謝 V
Acknowledgement VII
目錄 VIII
圖目錄 XII
表目錄 XIX
第一章 序論 1
1-1 簡介 1
1-2 光無線通訊及通訊衛星 3
1-3 資料中心 7
1-4 垂直共振腔面射型雷射(VCSEL) 簡介 9
1-5 面射型雷射的電流侷限 11
1-6 VCSEL之氧化層結構 13
1-7 水氧氧化系統 15
1-7-1 VCSEL濕氧化原理 16
1-7-2 氧化層掏離製程 19
1-7-3 IR CCD系統 21
第二章 元件結構設計 22
2-1 高亮度VCSEL陣列 22
2-1-1 提升元件功率 22
2-1-2 縮小元件發散角 23
2-1-3 縮小元件發光面積 27
2-2 850 nm波段VCSEL晶片磊晶結構 28
2-3 VCSEL元件結構設計 31
第三章 實驗流程 32
3-1 鋅擴散 (Zn diffusion) 32
3-2 水氧氧化製程 37
3-3 製作電極 (P Metal 和 N Metal) 42
3-4 BCB(Benzocyclobutene)製程 45
3-5 開洞(Via opening) 47
3-6 PAD金屬 49
第四章 實驗結果及探討 50
4-1 量測系統簡介 50
4-1-1 電流對電壓(I-V)的量測 50
4-1-2 光功率對電流(L-I)之量測 51
4-1-3 遠場(FFP Far Field Pattern)量測系統 51
4-1-4 近場(NFP Near Field Pattern)量測系統 52
4-1-5 頻譜(Spectrum)之量測系統 52
4-1-6 頻寬(Bandwidth)之量測系統 53
4-1-7 眼圖(Eye Pattern)量測系統 54
4-2 IET 850nm波段VCSEL陣列結構圖 56
4-2-1 光功率-電流-電壓(L-I-V)曲線比較 59
4-2-2 頻譜(Spectrum)比較 62
4-2-3 遠場發散角(Far Field Pattern, FFP)量測 63
4-2-4 E-O頻寬量測 64
4-2-5 近場(Near Field Pattern)量測 65
4-2-6 眼圖(Eye Pattern)量測 66
4-3 單模2x2 VCSEL陣列雙電極與單電極量測比較 68
4-3-1 光功率-電流-電壓(L-I-V)曲線比較 68
4-3-2 頻譜(Spectrum)比較 69
4-3-3 E-O頻寬比較 70
4-3-4 眼圖(Eye Pattern)量測比較 70
4-4 啞鈴結構7×7 VCSEL陣列雙電極與單電極量測比較 72
4-4-1 光功率-電流-電壓(L-I-V)曲線比較 72
4-4-2 頻譜(Spectrum)以及遠場(Far Field Pattern, FFP)量測比較 73
4-4-3 近場(Near Field Pattern, NFP)量測 74
4-4-4 頻率響應(E-O response)量測 75
4-4-5 眼圖(Eye pattern)量測 75
第五章 結論及未來探討 77
第六章 Reference 79
參考文獻 [1] M. Z. Chowdhury, Md. Shahjalal, S. Ahmed, and Y. M. Jang, "6G Wireless Communication Systems: Applications, Requirements, Technologies, Challenges, and Research Directions," IEEE Open J. Commun. Soc., vol. 1, pp. 957-975, Jul., 2020.
[2] Nikolay N. Ledentsov, O. Yu. Makarov, V. A. Shchukin, V. P. Kalosha, N. Ledentsov, L. Chrochos, M. Bou Sanayeh, and J. P. Turkiewicz, "High Speed VCSEL Technology and Applications" IEEE J. Lightw. Technol., vol. 40, no. 6, pp. 3242-3249, Mar., 2022.
[3] Space X, Retrieved, Jul., 2022, from
https://www.spacex.com/
[4] Morgan, Rachel, (2017 Aug). Nanosatellite Lasercom System. Retrieved from https://digitalcommons.usu.edu/cgi/viewcontent.cgi?filename=0&article=3653&context=smallsat&type=additional
[5] N. Haghighi, P. Moser, and J. A. Lott, “Power, Bandwidth, and Efficiency of Single VCSELs and Small VCSEL Arrays,” IEEE J. Sel. Top. Quantum Electron., vol. 25, no. 6, pp. 1-15, Dec., 2019.
[6] J. Skidmore, “Semiconductor Lasers for 3-D Sensing,” Opt. Photon. News, pp. 28-33, Feb., 2019.
[7] J. F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D’Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE, vol. 6908, pp. 690808, San Jose, CA, Jan., 2008.
[8] R. F. Carson, M. E. Warren, P. Dacha, T. Wilcox, J. G. Maynard, D. J. Abell, and K. J. Otis, “Progress in High-Power, High-Speed VCSEL Arrays,” Proc. SPIE, vol. 9766, pp. 97660B, San, Francisco, CA, Mar., 2016.
[9] R. F. Carson, E. W. Taylor, A. H. Paxton, H. Schone, K. D. Choquette, H. Q. Hou, M. E. Warren, and K. L. Lear, ‘‘Surface-emitting laser technology and its application to the space radiation environment,’’ Proc. SPIE, vol. 10288, pp.1028806, San Diego, CA, Jul., 1997.
[10] John. (2022, May 10). Fiber Optic Cable Types: Single Mode vs Multimode Fiber Cable. Retrieved from
https://community.fs.com/blog/single-mode-cabling-cost-vs-multimode-cabling-cost.html
[11] A. A. Juarez, X. Chen, J. E. Hurley, M. Thiermann, J. Stone, and M. J. Li” Graded-index Standard Single-Mode Fiber for VCSEL Transmission around 850 nm,” Proc. OFC 2019, paper M3C.2, San Diego, CA, Mar., 2019.
[12] S. Nakagawa, D. Kuchta, C. Schow, R John, A. L. Coldren, and Y. C. Chang, “1.5mW/Gbps Low Power Optical Interconnect Transmitter Exploiting High-Efficiency VCSEL and CMOS Driver,” Proc. OFC 2008, pp. 1-3, paper OThS3, San Diego, CA, Feb., 2008.
[13] W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley, “Design, Fabrication, and Performance of Infrared and Visible Vertical-Cavity Surface-Emitting Lasers,” IEEE J. Quantum Electron., vol. 33, no. 10, pp. 1810-1824, Oct., 1997.
[14] K. D. Choquette, and H. Q. Hou, “Vertical-Cavity Surface Emitting Laser: Moving from Research to Manufacturing,” Proc. IEEE, vol. 85, no. 11, pp. 1730-1739, Nov., 1997.
[15] Y. C. Chang, and L. A. Coldrem, “Efficient, High-data-rate Tapered oxide-aperture Vertical-Cavity Surface-Emitting Lasers” IEEE J. Sel. Top. Quantum Electron., vol. 15, no. 3, pp. 704-715, Jun., 2009.
[16] M. Yazdanypoor, and A. Gholami, “Optimizing Optical Output Power of Single-Mode VCSELs Using Multiple Oxide Layers,” IEEE J. Sel. Top. Quantum Electron., vol. 19, no. 4, pp. 1701708, Mar., 2013.
[17] 顏志成(民國101)。具有超低耗能,傳輸資料比值在850nm波段超高速(40Gbit/s)面射型雷射。未出版之碩士論文,國立中央大學電機工程研究所論文,桃園市。
[18] R. W. Herrick, A. Dafinca, P. Farthouat, A. A. Grillo, S. J. McMahon, and A. R. Weidberg, “Corrosion-Based Failure of Oxide-Aperture VCSELs,” IEEE J. Quantum Electron., vol. 49, no. 12, pp. 1045-1052, Oct., 2013.
[19] B. E. Deal, and A. S. Grove, “General Relationship for the Thermal Oxidation of Silicon,” IEEE J. Appl. Phys., vol. 36, no.12, pp. 3770-3778, Dec., 1965.
[20] K. Nakajima, “Calculation of stresses in InxGa1−xAs/InP strained multilayer heterostructures,” J. Appl. Phys., vol. 72, no. 11, pp. 5213-5219, Dec., 1992.
[21] K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in Selective Wet Oxidation of AlGaAs Alloys,” IEEE J. Sel. Top. Quantum Electron., vol. 3, no. 3, pp. 916-926, Jun., 1997.
[22] K. D. Choquette, K. L. Lear, R. P. Schneider, Jr., K. M. Geib, J. J. Figiel, and R. Hull, “Fabrication and Performance of Selectively Oxidized Vertical-Cavity Lasers,” IEEE Photon. Technol. Lett., vol. 7, no.11, pp.1237-1239, Nov., 1995.
[23] F. A. Kish, S. A. Maranowski, G. E. Hofler, N. Holonyak, S. J. Caracci, J. M. Dallesasse and K. C. Hsieh “Dependence on doping type (p/n) of the water vapor oxidation of high‐gap AlxGa1-xAs,” Appl. Phys. Lett., vol. 60, no. 25, pp. 3165-3167, Jun., 1992.
[24] K. D. Choquette, K. M. Geib, H. C. Chui, B. E. Hammons, H. Q. Hou, T. J. Drummond, and R. Hull, “Selective oxidation of buried AlGaAs versus AlAs layers,” Appl. Phys. Lett., vol. 69, no. 10, pp.1385-1387, Sep., 1996.
[25] K. L. Lear and A. N. Al-Omari, “Progress and issues for high speed vertical cavity surface emitting lasers,” Proc. SPIE, vol.6484, pp. 64840J, San Jose, CA, Feb., 2007.
[26] R. S. Geel, S. W. Corzine, J. W. Scott, D. B. Young, and L. A. Coldren, “Low Threshold Planarized Vertical-Cavity Surface-Emitting Lasers,” IEEE Photon. Technol. Lett., vol. 2, no. 4, pp. 234-236, Apr., 1990.
[27] A. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh, and A. Larsson, “Single Fundamental-Mode Output Power Exceeding 6mW from VCSELs with a Shallow Surface Relief,” IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 368-370, Feb., 2004.
[28] J.E. Bowers, High speed semiconductor laser design and performance, Solid-State Electron., vol. 30, no. 1, pp. 1-11, 1987.
[29] R. Safaisini, J. R. Joseph, and K. L. Lear, “Scalable High-CW-Power High-Speed 980-nm VCSEL Arrays,” IEEE J. Quantum Electron., vol. 46, no. 11, pp. 1590-1596, Aug., 2010.
[30] J. L. Yen, X. N. Chen, K. L. Chi, J. Chen, and J. W. Shi, “850 nm Vertical-Cavity Surface-Emitting Laser Arrays with Enhanced High-Speed Transmission Performance Over a Standard Multimode Fiber,” IEEE J. Lightw. Technol., vol. 35, no. 15, pp. 3242-3249, Mar., 2017.
[31] M. Yoshida, M. D. Zoysa, K. Ishizaki, Y. Tanaka, M. Kawasaki, R. Hatsuda, B. Song, J. Gelleta and S. Noda, “Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams,” Nature Mater., vol. 18, pp. 121–128, 2019.
[32] L. A. Coldren, and S.W. Corzine, “Diode Lasers and Photonic Integrated Circuits,” New York: Wiley, 1995.
[33] A. Haglund, J. S. Gustavsson, P. Modh, Member and A. Larsson, “Dynamic Mode Stability Analysis of Surface Relief VCSELs Under Strong RF Modulation,” IEEE Photon. Technol. Lett., vol. 17, no. 8, pp. 1602-1604, Aug., 2005.
[34] A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, “High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure,” Appl. Phys. Lett., vol. 85, no. 22, pp. 5161-5163, Nov., 2004.
[35] K. L. Lear, R. P. Schneidner, Jr., K. D. Choquette, and S. P. Kilcoyne, “Index Guiding Dependent Effects in Implant and Oxide Confined Vertical-Cavity Lasers,” IEEE Photon. Technol. Lett., vol 8, no. 6, pp.740-742, Jun., 1996.
[36] M. P. Tan, S. T. M. Fryslie, J. A. Lott, N. N. Ledentsov, D. Bimberg, and K. D. Choquette, “Error-Free Transmission Over 1-km OM4 Multimode Fiber at 25 Gb/s Using a Single Mode Photonic Crystal Vertical-Cavity Surface-Emitting Laser,” IEEE Photon. Technol. Lett., vol. 25, no.18, pp. 1823-1825, Sep., 2013.
[37] Y. Liu, W. C. Ng, B. Klein, and K. Hess, “Effects of the spatial nonuniformity of optical transverse modes on the modulation response of vertical-cavity-surface-emitting lasers,” IEEE J. Quantum Electron., vol. 39, no. 1, pp. 99-108, Jan., 2003.
[38] J. C. Shih, Z. Khan, Y. H. Chang, and J. W. Shi, “High-Brightness VCSEL Arrays with Inter-Mesa Waveguides for the Enhancement of Efficiency and High-Speed Data Transmission,” IEEE J. Sel. Top. Quantum Electron., Vol. 28, no. 1, Feb., 2022.
[39] K. Tai, G. Hasnain, J. D. Wynn, R. J. Fischer, Y. H. Wang, B. Weir, J. Gamelin, and A.Y. Cho, “90% coupling of top surface emitting GaAs/AlGaAs quantum well laser output into 8μm diameter core silica fibre,” Electron. Lett., vol. 26, no. 19, pp. 1628-1629, Sep., 1990.
[40] Y. J. Yang, T. G. Dziura, S. C. Wang, R. Fernandez, G. Du, and S. Wang, “Low threshold operation of a GaAs single quantum well mushroom structure surface emitting laser,” Appl. Phys. Lett., vol. 58, pp. 1780-1782, Apr., 1991.
[41] J. W. Shi, C. C. Chen, Y. S. Wu, S. H. Guol, C. Kuo, and Y. J. Yang, “High-Power and High-Speed Zn-Diffusion Single Fundamental-Mode Vertical-Cavity Surface-Emitting Lasers at 850-nm Wavelength,” IEEE Photonics. Technol. Lett., vol. 20, no. 13, pp. 1121-1123, Jul., 2008.
[42] M. E. Warren, D. Podva, P. Dacha, M. K. Block, C. J. Helms, J. Maynard, and R. F. Carson, "Low-divergence high-power VCSEL arrays for lidar application," Proc. SPIE, vol. 10552, pp. 105520E, San Francisco, CA, Feb., 2018.
指導教授 許晉瑋(Jin-Wei Shi) 審核日期 2022-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明