博碩士論文 109521049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:13.59.231.155
姓名 張筠萱(Yun-Hsuan Chang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用自差分電路對具有不同擊穿電壓之多層累增層的砷化銦鎵/砷化銦鋁之單光子雪崩二極體性能影響
(Effect of self-differencing circuit on InGaAs/InAlAs single photon avalanche diodes of multiple multiplication layers with different punch through voltages)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 單光子雪崩二極體(Single-photon Avalanche Diode, SPAD)在許多科學和工業領域都有很重要的地位,像是量子密鑰(Quantum Key Distribution)、自駕車的光達系統 (Light Detection And Ranging, LiDAR) 抑或是3D影像技術等等。以光纖通訊為主的光量子通訊應用需要一能偵測近紅外光波段之高靈敏度感測器,因此本文著眼於開發以砷化銦鎵為基礎的單光子崩潰二極體;然而,III-V材料的元件於磊晶時會產生許多缺陷,進而造成元件嚴重的後脈衝及暗計數問題。以砷化鋁銦 (InAlAs)作為累增層具有較高的崩潰機率,因此預期能有較高的單光子偵測效率 (single photon detection efficiency, SPDE),故本論文以砷化銦鎵/砷化鋁銦單光子崩潰二極體進行元件特性探討。
本論文中,我們所使用的單光子崩潰二極體具有三層累增層,相較於之前的磊晶設計,此次磊晶增加累增層厚度,也預期降低穿隧電流,同時增加載子崩潰的機率,然而這種設計改動,可能也會增加載子在能階中被缺陷捕獲的機率,進而會使後脈衝效應 (afterpulsing effect)與時基誤差 (timing jitter)變差,所以在累增層中間同樣加入額外電荷層來過渡電場強度,盡可能讓崩潰區域縮小,來改善前者帶來的afterpulsing 與timing jitter。
本文比較三種不同擊穿電壓之元件,做完整的單光子特性討論,並且比較有無自差分電路達到電容消除對元件特性參數的影響。由量測結果發現三元件之崩潰電壓差異不大、但擊穿電壓有極大差異分別為9 V、16 V及30 V。
元件以被動閘控模式(Passively Gated mode)操作以降低後脈衝效應,閘壓頻率依照有無自差分電路分別設定在9.9 MHz與10 kHz,隨著溫度下降,暗計數具有較明顯的溫度依賴性,在溫度200 K下也有較高的單光子偵測效率(~64 %),三元件之間有相近的後脈衝機率,且時基誤差在不同溫度下有相近的結果;此外,我們亦比較有無自差分電路對元件特性表現之影響,結果顯示有自差分電路可有效改善暗計數,低溫時能有更高的單光子偵測效率,然而在室溫下,因為暗計數高,自差分方法反而會把接連兩個發生崩潰的訊號減除,限制了計數率,故無法量測到更高的單光子偵測效率。
摘要(英) Single-photon Avalanche Diodes (SPADs) are important in many fields of science and industry, such as quantum key distribution, light detection and ranging (LiDAR) for self-driving cars, and also 3D imaging technology, etc. Especially, a very sensitive photon detector is highly demanded in the fiber-based photonic quantum communication. Therefore, we focus on the development of InGaAs-based SPAD for near infrared light detection. However, there are lots of defects during the epitaxy of III-V materials, which will cause serious afterpulsing effect and dark count problems. Since InAlAs exhibits high avalanche probability and hence high single photon detection efficiency (SPDE), we put our focus on the study of InGaAs/InAlAs SPADs.
In this thesis, we present a comprehensive investigation on the InGaAs/InAlAs SPADs with triple multiplication layer. Compared with the previous structure design of dual multiplication layers, the increase in the thickness of the multiplication layer is also expected to reduce the effect of tunneling current and increase the probability of avalanche. However, this design may increase the probability of afterpulsing effect and degrade the timing jitter. Therefore, we propose a novel design in the multiplication layer - an additional charge layer. It can divide the multiplication layer into high electric field and sub-high electric field region, so that the avalanche breakdown region can be restricted within a smaller area.
The figure of merits (FoM) of single photon detector for three mesa-type SPADs with different punch through voltage are studied. Those three SPADs have almost the same breakdown voltage but very different punch through voltage of 9V, 16V and 30V. We also compare FoMs of SPAD for the cases with and without the inclusion of self-differencing circuit.
SPADs were operated by a passively gated mode circuit. Depending on whether or not to use the SD circuit, the operating frequency is set at 9.9 MHz or 10 kHz with the pulse width of 1.5 ns. With reducing the temperature, the dark count rate (DCR) can be effectively suppressed for dual mesa device. It also exhibits higher SPDE of 64 % at 200 K .There is no much difference in the timing jitter and also afterpulsing for all three devices. Besides, we further discuss the impact of incorporation of SD circuit on the device performance. It turns out that the DCR can be greatly suppressed with SD circuit, which improves the SPDE at lower temperature. However, because the DCR is high at room temperature, the detector can be blinded while there are two consecutive avalanche events, which restricts the count rate so as to draw a limit on the SPDE performance at room temperature.
關鍵字(中) ★ 單光子雪崩二極體
★ 暗計數
★ 時基誤差
★ 單光子偵測效率
★ 自差分電路
關鍵字(英) ★ SPAD
★ Dark count rate
★ Jitter
★ SPDE
★ SD-circuit
論文目次 中文摘要 i
Abstract iii
目錄 v
圖目錄 vii
表目錄 ix
一、前言 1
1.1研究背景 1
1.2研究目的 6
二、基本原理及文獻探討 7
2.1 SPAD 基本元件物裡 7
2.1.1 I-V 特性操作原理 7
2.1.2二極體崩潰機制 8
2.2光子數目解析偵測器 10
2.2.1自差分電路 10
2.2.2光學自差分技術 11
2.2.3諧波減法技術 12
2.3元件參數介紹 13
2.3.1 暗計數 (dark count rate ) 13
2.3.2單光子偵測效率 (single photon detection efficiency) 15
2.3.3時基誤差 (timing jitter) 16
2.3.4響應率 (responsivity) 17
2.4元件操作截止電路 18
2.4.1自由運作電路 (free running mode circuit) 18
2.4.2閘控模式 (gated mode) 19
2.4.3 自我截止電路 (self-quchening ) 20
三、元件結構設計 22
3.1 SACGM 結構介紹 22
3.2元介磊晶設計 23
3.3元件模擬與設計 25
四、量測架構 27
4.1 降溫系統架設 27
4.2電壓電流量測 28
4.3暗計數量測方式 29
4.4光計數量測方式 31
4.5後脈衝及時基誤差量測方式 33
五、量測結果 36
5.1室溫下的電壓與電流量測結果 36
5.2變溫下的量測結果 39
5.2.1變溫下的電壓與電流量測結果 39
5.2.2變溫下暗計數量測 44
5.2.3 變溫下光計數量測 48
5.2.4 後脈衝機率量測 54
5.2.5 時基誤差量測 55
六、結論與未來展望 57
6.1結果比較與討論 57
6.2未來展望 58
參考文獻 59

參考文獻 [1] Thomas Jennewein, Marco Barbieri & Andrew G, “White Single-photon device requirements for operating linear optics quantum computing outside the post-selection basis,” Journal of Modern Optics, 276-287, (2011).
[2] Scarani, Valerio, et al. “The security of practical quantum key distribution.” Reviews of modern physics 81.3 (2009).
[3] https://epcco.com/epc/Applications/Lidar.as.html
[4] Development of a Pattern Recognition Approach for Analyzing Flow Cytometric Data
https://www.researchgate.net/publication/34709753_Development_of_a_pattern_recognition_approach_for_analyzing_flow_cytometric_data.
[5] 張蠟寶、康琳覮、陳健、趙清源、郟濤、許偉偉、曹春海、金颷兵、和吳培亨主編“超導纳米線單光子探測器“物理學報vol 60,no 3 (2011).
[6] Peter W. Shor, ” Algorithms for Quantum Computer :Discrete Logarithms and Factoring” Published in: Proceedings 35th Annual Symposium on Foundations of Computer Science, 20-22 (1994 ).
[7] Sheng-Di Lin, Chia-Ming Tsai, Wei-Syun Huang, Tai-Hsiang Liu, Dai-Rong Wu “Single-Photon Avalanche Didoe and its Application on Light Detection and Ranging“ in 科儀新知 212期(2017).
[8] B. Jalali, M. Paniccia G. Reed, "Silicon photonics," IEEE Photon. Technol. Lett., vol. 7, no. 12, pp. 4600-4615, (2006).
[9] Tan LJJ, Ong DSG, Ng JS, Tan CH, Jones SK, Qian YH and David JPR. “Temperature dependence of avalanche breakdown in InP and InAlAs.” IEEE J. Quantum Electron. 46, 1153–1157(2010).
[10] Xiao Meng, Shiyu Xie, Xinxin Zhou, Niccolò Calandri, Mirko Sanzaro, Alberto Tosi, Chee Hing Tan and Jo Shien Ng “InGaAs/InAlAs single photon avalanche diode for 1550 nm photons.”R. Soc. open sci.3: 150584 (2016).
[11] D. A. Ramirez, M. M. Hayat, G. Karve, J. C. Campbell, S. N. Torres, Bahaa E. A. Saleh, and M. C. Teich, ” Detection Efficiencies and Generalized Breakdown Probabilities for Nanosecond-Gated Near Infrared Single-Photon Avalanche Photodiodes, ”IEEE J. Sel. Top.Quantum Electron., vol. 42, no. 2, pp. 137-145,(2006).
[12] Alberto Tosi; Sergio Cova; Franco Zappa; Mark A. Itzler; Rafael Ben-Michael” InGaAs/InP Single Photon Avalanche Diode Design and Characterization” European Solid-State Device Research Conference, (2006).
[13] Kaibao Liu et al., ”Indium Phosphide-Based Near-Infrared Single Photon Avalanche Photodiode Detector Arrays. ” Laser & Optoelectronics Progress,(2019).
[14] Difference Between Zener and Avalanche Breakdown in https://pediaa.com/difference-between-zener-and-avalanche-breakdown/
[15] Kardynał, B., Yuan, Z. & Shields, ”An avalanche‐photodiode-based photon-number-resolving detector. ” Nature Photon, vol. 2, no. 7, pp. 425–428, (2008).
[16] Chen, X., Ding, C., Pan, H. et al. ”Temporal and spatial multiplexed infrared single-photon counter based on high-speed avalanche photodiode. ”Sci Rep 7, 44600, (2017).
[17] Yoshikazu Takeda, Akio Sasaki, Yujiro Imamura, and Toshinori Takagi. ”Electron mobility and energy gap of In0.53Ga0.47As on InP substrate. ” Journal of Applied Physics, vol. 47, (1976).
[18] Xiuliang Chen, E Wu, Lilin Xu, Yan Liang, Guang Wu, and Heping Zeng , “Photon-number resolving performance of the InGaAs/InP avalanche photodiode with short gates”, Appl. Phys. Lett. 95, 131118 (2009).
[19] B. E. Kardynal, Z. L. Yuan, and A. J. Shields, “An avalanche-photodiode based photon-number-resolving detector,” Nature Photonics 2, 425–428 (2008).
[20] Tan LJJ, Ong DSG, Ng JS, Tan CH, Jones SK, Qian YH and David JPR. “Temperature dependence of avalanche breakdown in InP and InAlAs.” IEEE J. Quantum Electron. 46, 1153–1157,(2010)
[21] Alessandro Restelli, Joshua C. Bienfang, and Alan L. Migdall , “Single-photon detection efficiency up to 50% at 1310 nm with an InGaAs/InP avalanche diode gated at 1.25 GHz,” Appl. Phys. Lett. 102, 141104 (2013)
[22] Shu-Cheng Li “Photon Detection Characteristics of Single Photon Avalanche Diode“國立交通大學碩士論文,(2013)。
[23] Hung-Jen Hsu“Single-Photon Avalanche Diode Controlled by Active
Quenching Circuit “國立交通大學碩士論文,(2011)。
[24] Xudong Jiang, Mark A Itzler, Kevin O’Donnell, Mark Entwistle, Krystyna Slomkowski. "InGaAs/InP single photon avalanche diodes with negative feedback." IEEE Photonics conference, September, (2012).
[25] Sifang You, James Cheng, and Yu-Hwa Lo. “Physics of Single Photon Avalanche Detectors with Built-In Self-Quenching and Self-Recovering Capabilities. “ IEEE Joural of Quantum Electronics, VOL. 48, July (2012)
[26] D. A. Ramirez, M. M. Hayat, G. Karve, J. C. Campbell, S. N. Torres,
Bahaa E. A. Saleh, and M. C. Teich, “ Detection Efficiencies and Generalized Breakdown Probabilities for Nanosecond-Gated Near Infrared Single-Photon Avalanche Photodiodes, “ IEEE J. Sel. Top.Quantum Electron., vol. 42, no. 2, pp. 137-145, Mar., (2006)
[27] Y. Xiao, I. Bhat, and M. N. Abedin, "Performance dependences on multiplication layer thickness for InP/InGaAs avalanche photodiodes based on time domain modeling," Proc. SPIE, vol. 5881, Sep., (2005)
[28] Michele Anti, Fabio Acerbi, Alberto Tosi*, Franco Zappa” 2D simulation for the impact of edge effects on the performance of
planar InGaAs/InP SPADs” Proc. of SPIE Vol. 8550, (2012).
[29] Peter Vines1, Kateryna Kuzmenko1, Jarosław Kirdoda2, Derek C.S. Dumas2, Muhammad M. Mirza 2, Ross W. Millar2, Douglas J. Paul 2 & Gerald S. Buller” High performance planar germanium-on-silicon” nature communications, 06 March, (2019).
[30] Chi-Xian Wu” Analysis and applications of Self-differencing InGaAs/InAlAs Single Photon Avalanche Diode” 中央大學碩士論文,(2022)。
[31] Xiao Meng, Chee Hing Tan, Simon Dimler, John P R David, and Jo Shien Ng” 1550 nm InGaAs/InAlAs single photon avalanche diode at room temperature” Optical Society of America 22 September, (2014).
[32] Naser Faramarzpour, Student Member, Jamal Deen, Fellow, Shahram Shirani, and Qiyin Fang” Fully Integrated Single Photon Avalanche Diode Detector in Standard CMOS 0.18-µm Technology” IEEE Transactions on electron device, vol. 55, no. 3, March, (2008).
[33] Yingjie Ma et al. ”Impact of etching on the surface leakage generation in mesa-type InGaAs/InAlAs avalanche photodetectors. ” Opt. Express, vol. 24, pp. 7823-7834, (2016).
[34] Masahiro Nada, Yoshifumi Muramoto, Haruki Yokoyama, Tadao Ishibashi and Hideaki Matsuzaki” Triple-mesa Avalanche Photodiode With Inverted P-Down Structure for Reliability and Stability” IEEE Journal of Lightwave Technology, vol. 32, no. 8, April 15, (2014).
[35] X. Meng, C. H. Tan, S. Dimler, J. P. R. David, and J. S. Ng, ‘‘1550 nm InGaAs/InAlAs single photon avalanche diode at room temperature,’’ Opt.Exp.,vol. 22, pp. 22608–22615, Sep. (2014).
[36] Y. -S. Lee et al., ”In0.52Al0.48As Based Single Photon Avalanche Diodes With Stepped E-Field in Multiplication Layers and High Efficiency Beyond 60%,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 28, no. 2, pp. 1-7, (2022).
[37] Kuan-Ting, Liu,”Effect of Etching Depth on Mesa-type InGaAs/InAlAs Single-Photon Avalanche Diodes with Dual Multiplication Layers ” 中央大學碩士論文,(2021)。
[38] Robert H. Hadfield,” Single-photon detectors for optical quantum information applications ” nature photonics ,VOL 3 Dec. (2009).
[39] Shuangfeng Jiang; Majid Safari,” High-Speed Free-Space QKD in the Presence of SPAD Dead Time ” IEEE , Accession Number: 21864470. (2022).
[40] Yan Liang; Bo Xu; Qilai Fei; Wen Wu; Xiao Shan; Kun Huang; Heping Zeng,” Low-Timing-Jitter GHz-Gated InGaAs/InP Single-Photon Avalanche Photodiode for LIDAR ” IEEE Journal of Selected Topics in Quantum Electronics,Vol 28,Issue: 2:, March-April (2022)
指導教授 李依珊 許晉瑋(Yi-Shan Lee Jin-Wei Shi) 審核日期 2022-11-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明