博碩士論文 109521064 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.137.180.122
姓名 蕭百均(Bai-Jun Xiao)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 多微電網去集中化管理之能源共享與調度策略
(Energy Sharing and Dispatch Strategy for Multi-Microgrids Under Decentralized Collaborative Framework)
相關論文
★ 高效能電子轉向控制器設計★ 微電網能源管理系統優化調度基於螢火蟲移動迴歸策略
★ 以半區間法為基礎之最大功率追蹤技術於能源轉換系統之設計★ 智慧型電力品質事件辨識技術於分散式能源 之監測辨識系統開發
★ 以自適應性線性濾波器與頻率檢測法為基礎之並聯主動式電力濾波器設計★ 以互補式單側多脈波寬度調變之低電流漣波高增益比昇壓轉換器研製
★ 以類神經網路為基礎之時頻域混合交流電弧爐模型於電力品質分析之應用★ 以虛擬同步發電機為基礎之微電網轉換器控制算法設計
★ 以IEEE 1459標準為基礎之選擇性補償策略應用於並聯式主動電力濾波器設計★ 結合雙二階廣義積分法與鎖頻迴路為基礎 之串聯式主動電力濾波器設計
★ 微電網與市電併聯之同步控制器設計★ 以自適應性為基礎之遞迴式最小二乘方法應用於配電型靜態同步補償器設計
★ 磁共振式無線功率傳輸系統之線圈及鐵氧體設計與分析★ 具共振頻率切換之多輸出無線功率傳輸裝置研製
★ 高功率雷射源之切換式電源供應器★ 應用於微電網故障保護之專家系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 因為再生能源在近年來的發展,更全面的節能以及永續發展並有效的提高能源使用效率對於發展電力系統及智慧電網是很重要的,也因此電力調度的需求也逐漸地提高,近年來政府持續推動如綠能屋頂等綠能供電設備的安裝讓家庭得以自主發電並減少市電的使用並搭配儲能系統就可將一個家庭視為一個小型微電網,當這樣的家庭組成社區並以不加入市電的前提下長久運作就形成了多重微電網系統,電力調度的技術能讓多個電網能互相溝通、輸送電力,因為系統中的電網能吸收多餘的電力,而且還可以互相支持作為備用電源進而讓能源的利用率達到最佳化,但傳統的多電網電力調度是以中央集中管理控制的系統來實現,將各電網控制器的數值匯集至中央控制器集中優化後再將命令回傳至各電網控制器,儘管這樣的控制系統可以得到所有電網的資訊並處理,但也因此造成中央系統有巨大的運算與通訊負擔,並且運用於以不加入市電為前提的孤島多重微電網系統而言可能會因集中運算的調度命令不夠即時而導致負載被迫中斷或因此損壞,因此本論文將建立以去集中化控制為基礎的多微電網控制系統並加入電網運作成本為計算參數以獲得最佳電力調度。
本文模擬採用美國國家儀器公司所開發之模擬軟體Labview來模擬本文電力調度策略的可行性,並使用Python撰寫相關類神經演算法,最終驗證演算法之結果在調度成本的優化與系統可靠性。
摘要(英) In recent years, under the development of renewable energy, the demand for power dispatch has gradually increased. More comprehensive energy use and sustainable development. Improving energy efficiency is very important for the development of power systems and smart grids. In recent years, the government has continued to promote installation of green energy power generation such as energy roofs allows families to generate electricity independently and reduce the use of commercial power. When combined with an energy storage system, a family can be regarded as a small microgrid. When such families form a community and sharing their energy. The community can be regarded as a multi-microgrid system. The power dispatching technology allows multiple grids to communicate with each other and transmit power, because the grids in the system can absorb excess power, and can also support each other as a backup power source for energy utilization However, the traditional multi-microgrid power dispatch is realized by a centralized control system. The data of the grid are collected to the central controller for centralized optimization and then the commands are transmitted back to the grid controllers. Although such the control system can obtain and process information from all microgrid, it also causes a huge computational and communication burden on the central system. If the dispatch command of the calculation is not instant enough, the load may be interrupted or damaged. Therefore, this paper will establish a multi-microgrid system based on decentralized control and add the regulation cost as a calculation parameter to obtain the best power dispatch.
This paper uses the simulation software Labview to simulate the feasibility of the power dispatching strategy, and uses Python to write related neural algorithms, and finally verify the results of the algorithm in the optimization of dispatching cost and system reliability.
關鍵字(中) ★ 電力調度策略
★ 多重微電網
★ 分散式運算
★ 調度成本管理
關鍵字(英) ★ power dispatch strategy
★ multi-microgrids
★ decentralized computing
★ dispatch cost management
論文目次 論文摘要 I
ABSTRACT III
致謝 V
目錄 VI
圖目錄 IX
表目錄 XIV
第一章 緒論 1
1-1研究背景與動機 1
1-2 文獻探討 2
1-3 論文大綱 3
第二章 多微電網電力調度架構 4
2-1 微電網之系統架構 4
2-1-1 微電網併網狀態下之架構 4
2-1-2 微電網孤島狀態下之架構 5
2-1-3 互聯多微電網之系統架構 7
2-2 電力調度資料資料處理架構 9
2-2-1 集中化運算架構 9
2-2-2 去集中化運算架構 10
2-2-3 集中化與去集中化運算架構比較 11
2-2-4 基於共識運算之去集中化多微電網運算架構 13
第三章 互聯多微電網之能源管理調度策略 21
3-1 微電網運作成本規劃 21
3-2 電力調度命令計算方法 25
3-2-1 調適性類神經-模糊推論系統 27
3-3 多微電網去集中化電力調度策略 33
第四章 互聯多微電網電力共享調度策略模擬結果 37
4-1 實驗場域微電網參數與電力資料介紹 37
4-2 模擬情境一 41
4-3 模擬情境二 46
4-4 模擬情境三 52
4-5 模擬情境四 57
4-6 實驗場域調度驗證 63
第五章 結論與未來研究方向 68
5-1 結論 68
5-2 未來研究方向 69
參考文獻 70
參考文獻 [1] O. Babayomi, Y. Li, Z. Zhang, R. Kennel and J. Kang, "Overview of Model Predictive Control of Converters for Islanded AC Microgrids," 2020 IEEE 9th International Power Electronics and Motion Control Conference (IPEMC2020-ECCE Asia), 2020, pp. 1023-1028, doi: 10.1109/IPEMC-ECCEAsia48364.2020.9368069.
[2] N. K. Paliwal and R. K. Rai, "Micro-grid operation during grid connected and Islanding mode using conventional and inverter interfaced source," 2014 International Conference on Smart Electric Grid (ISEG), 2014, pp. 1-6, doi: 10.1109/ISEG.2014.7005606.
[3] 「限電知識與資訊」,台灣電力公司,民國111年。
[4] G. Mei and J. Gong, "Multi-microgrid coordinate dispatching of multi-time scale source-load supply and demand interaction based on master-slave game theory," 8th Renewable Power Generation Conference (RPG 2019), 2019, pp. 1-7, doi: 10.1049/cp.2019.0458.
[5] Su Shi, Yan Yuting, Jin Ming, Wang Qianggang and Zhou Niancheng, "Hierarchical coordination control of multi-microgrids system in series and parallel structure," 2012 China International Conference on Electricity Distribution, 2012, pp. 1-5, doi: 10.1109/CICED.2012.6508530.
[6] W. Shi, X. Xie, C. -C. Chu and R. Gadh, "Distributed Optimal Energy Management in Microgrids," in IEEE Transactions on Smart Grid, vol. 6, no. 3, pp. 1137-1146, May 2015, doi: 10.1109/TSG.2014.2373150.
[7] F. Khavari, A. Badri, A. Zangeneh and M. Shafiekhani, "A comparison of centralized and decentralized energy-management models of multi-microgrid systems," 2017 Smart Grid Conference (SGC), 2017, pp. 1-6, doi: 10.1109/SGC.2017.8308837.
[8] 陳韋均,”基於邊緣運算之互聯微電網電力調度控制策略”,碩士論文,國立中央大學,民國110年。
[9] H. Pourbabak, J. Luo, T. Chen and W. Su, "A Novel Consensus-Based Distributed Algorithm for Economic Dispatch Based on Local Estimation of Power Mismatch," in IEEE Transactions on Smart Grid, vol. 9, no. 6, pp. 5930-5942, Nov. 2018, doi: 10.1109/TSG.2017.2699084.
[10] 王文俊,認識Fuzzy理論與應用,第四版,全華圖書股份有限公司,中華民國109年9月。
[11] 林繼駿,「微電網之儲能系統應用簡介」,台灣ESCO會訊第三十三期,2013年。
[12] A. Salazar, A. Berzoy, W. Song and J. M. Velni, "Energy Management of Islanded Nanogrids Through Nonlinear Optimization Using Stochastic Dynamic Programming," in IEEE Transactions on Industry Applications, vol. 56, no. 3, pp. 2129-2137, May-June 2020, doi: 10.1109/TIA.2020.2980731.
[13] F. Nejabatkhah and Y. W. Li, "Overview of Power Management Strategies of Hybrid AC/DC Microgrid," in IEEE Transactions on Power Electronics, vol. 30, no. 12, pp. 7072-7089, Dec. 2015, doi: 10.1109/TPEL.2014.2384999.
[14] W. Shi, X. Xie, C. -C. Chu and R. Gadh, "Distributed Optimal Energy Management in Microgrids," in IEEE Transactions on Smart Grid, vol. 6, no. 3, pp. 1137-1146, May 2015, doi: 10.1109/TSG.2014.2373150.
[15] L. Li, H. Ye, Z. Liu, H. Han, Y. Sun and M. Su, "Decentralized economical-sharing scheme for cascaded AC microgrids," 2017 IEEE Energy Conversion Congress and Exposition (ECCE), 2017, pp. 3736-3740, doi: 10.1109/ECCE.2017.8096660.
[16] Diego Ongaro and John Ousterhout, "In Search of an Understandable Consensus Algorithm," Stanford University, 2014 USENIX Federated Conferences, June 17-20,2014.
[17] Zehuai Liu , Yingqi Yi , Jiahao Yang , Wenhu Tang , Yongjun Zhang , Xiaoyu Xie , Tianyao Ji, "Optimal planning and operation of dispatchable active power resources for islanded multi-microgrids under decentralised collaborative dispatch framework," IET Gener. Transm. Distrib., 2020, Vol. 14 Iss. 3, pp. 408-422.
[18] M. I. Wahyuddin, P. S. Priambodo and H. Sudibyo, "Energy Inefficiency on Battery Internal Resistance and Applications," 2018 4th International Conference on Nano Electronics Research and Education (ICNERE), 2018, pp. 1-4, doi: 10.1109/ICNERE.2018.8642600.
[19] X. Hu, C. Zou, X. Tang, T. Liu and L. Hu, "Cost-Optimal Energy Management of Hybrid Electric Vehicles Using Fuel Cell/Battery Health-Aware Predictive Control," in IEEE Transactions on Power Electronics, vol. 35, no. 1, pp. 382-392, Jan. 2020, doi: 10.1109/TPEL.2019.2915675.
[20] R. Kanapady, K. Y. Kyle and J. Lee, "Battery life estimation model and analysis for electronic buses with auxiliary energy storage systems," 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), 2017, pp. 945-950, doi: 10.1109/APEC.2017.7930810.
[21] 「電力供需資訊」,台灣電力公司,民國111年。
[22] Yassir DAHMANE,Malek GHANES,Raphael CHENOUARD,Mario ALVARADO-RUIZ, "Decentralized Control of Electric Vehicle Smart Charging for Cost Minimization Considering Temperature and Battery Health," 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids.
[23] A. Bocca, Y. Chen, A. Macii, E. Macii and M. Poncino, "Aging and Cost Optimal Residential Charging for Plug-In EVs," in IEEE Design & Test, vol. 35, no. 6, pp. 16-24, Dec. 2018, doi: 10.1109/MDAT.2017.2753701.
指導教授 陳正一(Cheng-I Chen) 審核日期 2022-8-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明