博碩士論文 109521090 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:3.138.117.233
姓名 許文瀚(Wen-Han Hsu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 三相Vienna整流器無電壓感測線性非時變直接功率控制
(A Linearized Time-Invariant Voltage-Sensorless Direct Power Control of Three-phase Vienna Rectifiers)
相關論文
★ 微電網逆變器之智慧型控制策略★ 高頻高電流之雙向直流-直流轉換器設計
★ 應用於三相轉換器之被動元件在線監測與無電流感測三相整流器之系統控制★ 結合零序回授補償與無通訊之載波同步於並聯雙向交直流轉換器之環流抑制
★ 具柔切三相六開關反流器之併網及新型垂降控制策略★ 基於無電流感測三相Vienna整流器之新型電壓判斷成分注入法於平衡及不平衡直流鏈電壓之應用
★ 基於虛擬阻抗孤島交流微電網功率分配及其電壓與頻率恢復控制策略之發展★ 應用於具儲能混合交直流微電網之雙向互連轉換器電壓控制策略
★ 具柔切三相分源逆變器與直交流電壓控制策略研製★ 考慮不平衡電源之三相整流器線性化直接 功率控制之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 三相Vienna整流器有著高轉換效率,較低電路成本以及較低的開關電壓應力等優點,因此,三相Vienna整流器是一種被廣泛應用於車用充電以及工業用電的轉換器,本論文提出一種新型的無感測輸入電壓線性化直接功率控制架構應用於三相Vienna整流器電路,控制架構包含了三個子架構,分別為(1)線性非時變直接功率控制; (2)虛擬磁通與輸入實虛功估測; (3) zero crossing distortion及電容電壓不平衡補償以及單載波切換PWM。
利用代數變換的方式將控制系統由線性時變系統轉換為線性非時變系統,使得控制器的設計得以簡化,在線性化直接功率控制的架構下,相較於傳統的電壓導向控制架構,本文所提的線性化直接功率控制方式有著較佳的動態響應,而在無感測線性非時變直接功率控制的架構下,本文結合虛擬磁通的估測觀念,設計輸入實功與虛功的估測器,達到無感測輸入電壓的直接功率控制,能夠減少感測器的使用。
本文提出的兩種架構皆不須使用鎖相迴路,相較於傳統的電壓導向控制,本文所提的架構都能達到較低的輸入電流總諧波失真。
摘要(英) Three-phase Vienna rectifiers have the advantages of high conversion efficiency, low circuit cost and low voltage stress. Therefore, three-phase Vienna rectifier widely used in vehicle charging and industrial electricity. This paper presents a linearized time-invariant voltage-sensorless direct power control applied to the three-phase Vienna rectifier circuit. This control architecture consists of three sub architectures, including (1) the linear time-invariant direct power control, (2) virtual flux, input active power and virtual flux es-timator, (3) zero crossing distortion, capacitor voltage unbalance compensation and single carrier PWM. The proposed method transfers the system from linear time varying system to linear time invariant system by algebraic transformation, which makes the design of the controller more simple. Compared with the traditional voltage oriented control architecture, linearized time-invariant direct power control method has a better dynamic response.
To achieve the direct power control without input voltage sensor, this article proposes sensorless control method, i.e. linearized time-invariant voltage-sensorless direct power control. Compared with the traditional voltage oriented control architecture, linearized time-invariant voltage-sensorless direct power control can reduce the system cost. The pro-posed direct power control method with and without sensor have lower input current total harmonic distortion than the voltage oriented control method, and does not require the use of phase locked loop circuit.
關鍵字(中) ★ Vienna整流器
★ 無電壓感測
★ 直接功率控制
★ zero crossing distortion補償
★ 實虛功估測
關鍵字(英) ★ Vienna rectifier
★ voltage sensorless
★ Direct Power Control
★ zero crossing distortion compensation
★ active and reactive power estimation
論文目次 目錄
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 xiii
第一章 簡介 1
1-1 研究背景與動機 1
1-2 文獻回顧 2
1-3 本論文之貢獻 4
1-4 論文架構概述 5
第二章 三相Vienna整流器電路 6
2-1 前言 6
2-2 三相Vienna整流器電路架構 9
2-3 三相Vienna整流器電路開關組態 10
2-4 三相Vienna整流器脈波寬度調變PWM切換方法 13
2-4-1正弦脈波寬度調變(Sinusoidal PWM) 13
2-4-2空間向量脈波寬度調變(Space Vector PWM) 14
第三章 三相整流器傳統控制策略 21
3-1 前言 21
3-2 Vienna整流器雙迴路控制 22
3-2-1零交越失真(zero crossing distortion)成因 22
3-2-2 Vienna 雙迴路電壓導向控制架構 31
3-3 虛擬磁通計算與實虛功估測 43
3-3-1極電壓與虛擬磁通之計算 43
3-3-2 實功P與虛功Q之計算 44
3-4 三相六開關整流器之線性非時變直接功率控制 46
3-5 三相Vienna整流器之單載波PWM 51
第四章 Vienna 新型無感測控制策略 53
4-1 前言 53
4-2 三相Vienna整流器之線性非時變直接功率控制 54
4-2-1 Vienna整流器之交流端建模 54
4-2-2 Vienna整流器之直流端建模 55
4-2-3 Vienna整流器線性非時變控制器設計 56
4-2-4 三相Vienna整流器之線性非時變直接功率控制方塊圖 57
4-3 Vienna無電壓感測功率估測器 59
4-3-1 Vienna極電壓與虛擬磁通計算 59
4-3-2 Vienna 實虛功估測 61
4-4 Vienna無電壓感測直接功率控制 63
第五章 模擬結果 66
5-1 前言 66
5-2 模擬電路與元件參數 67
5-3 Vienna整流器 Voltage Oriented Control模擬結果 72
5-4 Vienna整流器 Direct Power Control 模擬結果 76
5-5 Vienna整流器 Sensorless Direct Power Control 模擬結果 80
5-6 Vienna整流器不同控制架構下動態響應比較 89
第六章 實作電路結果 92
6-1 實作電路 92
6-2 Vienna整流器 Voltage Oriented Control實作結果 104
6-3 Vienna整流器 Direct Power Control 實作結果 108
6-4 Vienna整流器 Sensorless Direct Power Control實作結果 112
6-5 Vienna整流器不同控制架構下性能比較實作結果 120
第七章 結論與未來展望 128
7-1 論文內容總結 128
7-2未來研究方向 129
參考文獻 130
參考文獻 參考文獻
[1] J. W. Kolar and F. C. Zach, "A novel three-phase utility interface minimizing line cur-rent harmonics of high-power telecommunications rectifier modules," Proceedings of Intelec 94, 1994, pp. 367-374.
[2] Chongming Qiao and K. M. Smedley, "Three-phase unity-power-factor star-connected switch (VIENNA) rectifier with unified constant-frequency integration control," in IEEE Transactions on Power Electronics, vol. 18, no. 4, pp. 952-957, July 2003.
[3] R. Lai, F. Wang, R. Burgos, D. Boroyevich, D. Jiang and D. Zhang, "Average Modeling and Control Design for VIENNA-Type Rectifiers Considering the DC-Link Voltage Balance," in IEEE Transactions on Power Electronics, vol. 24, no. 11, pp. 2509-2522, Nov. 2009.
[4] J. Lee and K. Lee, "A Novel Carrier-Based PWM Method for Vienna Rectifier With a Variable Power Factor," in IEEE Transactions on Industrial Electronics, vol. 63, no. 1, pp. 3-12, Jan. 2016.
[5] Wenxi Yao, Zhengyu Lv, Ming Zhang and Zhuang Lin, "A novel SVPWM scheme for Vienna rectifier without current distortion at current zero-crossing point," 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), 2014, pp. 2349-2353.
[6] H. Xu, W. Yao and S. Shao, "Improved SVPWM schemes for vienna rectifiers without current distortion," 2017 IEEE Energy Conversion Congress and Exposition (ECCE), 2017, pp. 3410-3414.
[7] Sunbul and V. K. Sood, "Simplified SVPWM Method for the Vienna Rectifier," 2019 20th Workshop on Control and Modeling for Power Electronics (COMPEL), 2019, pp. 1-8.
[8] K. Siriphan and P. Khamphakdi, "Analysis of Center-Aligned Space Vector Pulse Width Modulation Realization for Three-Phase Vienna Rectifier," 2019 International Confer-ence on Power, Energy and Innovations (ICPEI), 2019, pp. 44-47.
[9] Hag-Wone Kim, Byung-Chul Yoon, Kwan-Yuhl Cho, Byung-Kuk Lim and Soon-Sang Hwang, "Single carrier wave comparison PWM for Vienna rectifier and consideration for DC-link voltage unbalance of offset voltage effects," 2011 IEEE 33rd International Telecommunications Energy Conference (INTELEC), 2011, pp. 1-6.
[10] W. Ding, C. Zhang, F. Gao, B. Duan and H. Qiu, "A Zero-Sequence Component Injection Modulation Method With Compensation for Current Harmonic Mitigation of a Vienna Rectifier," in IEEE Transactions on Power Electronics, vol. 34, no. 1, pp. 801-814, Jan. 2019.
[11] W. Ding, H. Qiu, B. Duan, X. Xing, N. Cui and C. Zhang, "A Novel Segmented Component Injection Scheme to Minimize the Oscillation of DC-Link Voltage Under Balanced and Unbalanced Conditions for Vienna Rectifier," in IEEE Transactions on Power Electronics, vol. 34, no. 10, pp. 9536-9551, Oct. 2019.
[12] H. Ma, J. Zhao, M. Yang and Y. Lu, "Predictive Direct Power control for Three-phase Vienna Rectifier with Simplied SVM," 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), 2018, pp. 1-5.
[13] M. Hui, X. Yunxiang, L. Wenjing and C. Bing, "Research on direct power control based on sliding mode control for vienna-type rectifier," IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society, 2015, pp. 000025-000030.
[14] C. Dang, F. Wang, X. Tong, D. Liu, X. Mu and W. Song, "An Improved Voltage Sensor-less Model Predictive Direct Power Control for Vienna Rectifier," 2021 IEEE 1st International Power Electronics and Application Symposium (PEAS), 2021, pp. 1-6.
[15] X. Huang, Z. Yang, G. Chen and C. Xi, "Model Predictive Control of Current with Fixed Switching Frequency on VEINNA Rectifier," 2020 Chinese Control And Decision Conference (CCDC), 2020, pp. 2392-2397.
[16] Y. Gui, M. Li, J. Lu, S. Golestan, J. M. Guerrero and J. C. Vasquez, "A Voltage Modulated DPC Approach for Three-Phase PWM Rectifier," in IEEE Transactions on Industrial Electronics, vol. 65, no. 10, pp. 7612-7619, Oct. 2018.
[17] T. Noguchi, H. Tomiki, S. Kondo and I. Takahashi, "Direct power control of PWM con-verter without power source voltage sensors," IAS ′96. Conference Record of the 1996 IEEE Industry Applications Conference Thirty-First IAS Annual Meeting, 1996, pp. 941-946 vol.2.
[18] G. Yu, Y. Wang, S. Ma and L. Zhang, "Research of Direct Power Control of PWM rectifier based on virtual flux," 2014 17th International Conference on Electrical Machines and Systems (ICEMS), 2014, pp. 775-779.
[19] M. Malinowski, M. P. Kazmierkowski, S. Hansen, F. Blaabjerg and G. D. Marques, "Virtual-flux-based direct power control of three-phase PWM rectifiers," in IEEE Transactions on Industry Applications, vol. 37, no. 4, pp. 1019-1027, July-Aug. 2001.
[20] M. Malinowski, M. Jasinski and M. P. Kazmierkowski, "Simple direct power control of three-phase PWM rectifier using space-vector modulation (DPC-SVM)," in IEEE Transactions on Industrial Electronics, vol. 51, no. 2, pp. 447-454, April 2004.
[21] F. Yu, X. Liu, X. Zhang and Z. Zhu, "Model Predictive Virtual-Flux Control of Three-Phase Vienna Rectifier Without Voltage Sensors," in IEEE Access, vol. 7, pp. 169338-169349, 2019.
指導教授 廖益弘(Yi-Hung Liao) 審核日期 2022-9-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明