博碩士論文 109521125 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:110 、訪客IP:3.145.90.119
姓名 楊子廣(Tzu-Kuang Yang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 P型鎂銀銻材料及鎂矽錫/鎂銀銻熱電元件製作
(Process Innovation of P-type MgAgSb Thermoelectric Materials and Mg2(SiSn) / MgAgSb Thermoelectric Devices)
相關論文
★ 以熱熔異質磊晶成長法製造之鍺光偵測器★ 在SOI基板上以快速熱熔法製造高品質鍺及近紅外線光偵測元件之研製
★ 鉭錳合金及銅鍺化合物應用於積體電路後段製程中銅導線之研究★ 快速熱熔磊晶成長法製造側向PIN(Ge-Ge-Si)光偵測器
★ 二維薄膜及三維塊材Seebeck係數量測★ 塊材、薄膜與奈米線之熱導係數量測方法探討
★ 以快速熱熔異質磊晶成長法製作鍺矽累增型光偵測器★ 以快速熱熔融磊晶成長法製作 鍺錫合金PIN型光偵測器
★ 利用火花電漿燒結法製備以矽為基底之奈米材料於熱電特性上之應用研究★ P型金屬氧化物薄膜的製備應用於軟性電子
★ 金屬氧化物製備應用於軟性電子元件★ 超導材料釔鋇銅氧化物熱電特性量測分析
★ 鎂矽錫合金熱電特性研究及應用★ 矽基熱電模組開發及特性研究
★ P型金屬氧化物與硫化物之研究★ 物聯網之熱感測器應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年由於溫室氣體造成得地球暖化越來越嚴重,各國專家對於新替代能源及能源回收的研究日益增加,熱電發電是近幾年熱門的研究領域,利用溫差來發電,只要能夠收集廢熱並產生溫度上的落差便能產生電能。近年研究發現MgAgSb作為一種高效能、無毒且豐富的低溫區熱電材料有淺力取代有毒性且較稀有的Bi2Te3化合物,因此MgAgSb成為科學家熱門研究主題。
本實驗對P型MgAgSb熱電材料摻雜不同比例的Mg2Sn,實驗得出摻雜0.2 at%及0.25 at%的試片有最佳的熱電特性,再比較兩者的平均ZT後發現摻雜0.2 at%的試片有較高的平均ZT值。嘗試四種方式製作接觸金屬試片,分別為導電金屬漿料、金屬粉末壓成薄片、金屬薄片及沉積金屬,嘗試不同金屬在試片上下兩側製作一層金屬後高溫燒結,觀察試片與接觸金屬的接合效果,發現P型MgAgSb試片使用Ni粉末壓成薄片作為接觸金屬有較佳的接合及最大的Seebeck值落在110 μV/K至125 μV/K。相比於單純MgAgSb試片的Seebeck值(105 μV/K至135 μV/K),並沒有太大的差異,並不會因為多了接觸金屬後而造成原Seebeck的降低。
單對N-P熱電元件的實驗分別製作了三種不同製程方式的元件,使用耐高溫凸緣密封膠作為試片及玻璃片空隙的接合物後,於試片串聯處塗上太陽能導電Ag漿高溫燒結後電鍍Ni金屬層的製作方式有較大的輸出電壓及輸出功率元件,最大輸出電壓約7.9mV而最大輸出功率約為1 μW。
摘要(英) Global warming has become more and more serious in recent years, and experts are devoting in searching alternative energy. Thermoelectric materials are promising candidates. Recently, studies have found that MgAgSb, as a high-efficiency, non-toxic thermoelectric material in the low temperature region, could have the potential to replace the toxic and rare Bi2Te3 compounds.
In this study, the P-type MgAgSb thermoelectric material was doped with different ratio of Mg2Sn. The experiments proved that MgAgSb doped with 0.2 at% and 0.25 at% shows better thermoelectric properties and the one doping with 0.2 at% Mg2Sn is the best. Different contact metals were tested, and the result shows that Ni is suitable with the best Seebeck value between 110 μV/K and 125 μV/K.
For thermoelectric devices, Ag paste coating and electroplated Ni are used, and it presents large output voltage and power (approximately 7.9mV and the 1 μW, respectively).
關鍵字(中) ★ 熱電材料
★ 熱電元件
★ 鎂銀銻
關鍵字(英)
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 xiii
1 第一章 緒論 1
1-1 前言 1
1-2 研究目的及動機 3
2 第二章 基礎理論與文獻回顧 12
2-1 熱電效應 12
2-1-1 Seebeck效應 12
2-1-2 Peltier效應 14
2-1-3 Thomson效應 15
2-2 熱電優值係數(Thermoelectric figure of merit) 16
2-2-1 熱電優值與轉換效率之關係 18
2-2-2 電子熱導對熱導係數的影響 20
2-2-3 聲子熱導對熱導係數的影響 21
2-3 熱電材料介紹 22
2-4 熱電材料之應用 26
2-5 MgAgSb熱電材料 27
2-6 熱電模組之研究 29
2-6-1 熱電材料接合 30
2-6-2 熱電元件電極接合研究 33
2-6-3 擴散阻擋層 35
3 第三章 實驗量測儀器 36
3-1 電阻率量測 36
3-2 Seebeck係數量測 40
3-3 熱電塊材熱傳導率之量測 42
3-3-1 比熱量測 43
3-3-2 熱擴散係數量測 45
3-3-3 密度量測 46
3-4 掃描電子顯微鏡 (SEM) 47
3-5 X射線粉末繞射儀 (XRD) 48
3-6 單一試片及元件輸出量測 49
4 第四章 實驗方法與步驟 51
4-1 實驗製成流程 51
4-2 實驗樣品製備 52
4-2-1 Sb粉末製備 52
4-2-2 Mg_3 Sb_2 及Ag_3 Sb粉末製備 56
4-2-3 Mg_3 Sb_2 及Ag_3 Sb冷壓塊材 57
4-2-4 高溫燒結Mg_3 Sb_2 58
4-2-5 高溫燒結Ag_3 Sb 59
4-2-6 球磨Mg_3 Sb_2 及Ag_3 Sb粉末 60
4-2-7 高溫燒結MgAgSb試片 62
4-3 實驗製程開發流程 64
4-3-1 改變摻雜之成分 64
4-3-2 改變摻雜之比例 65
4-4 接觸金屬試片製作 66
4-5 熱電元件製作 70
5 第五章 實驗結果與討論 74
5-1 改變摻雜成分實驗結果 74
5-2 改變摻雜成分實驗結果 83
5-3 接觸金屬試片實驗結果 86
5-4 熱電元件實驗結果討論 93
第六章 結論與未來展望 97
參考文獻 98
參考文獻 [1]https://www.moeaboe.gov.tw/ECW/populace/web_book/wHandWebReports_File.ashx?type=office&book_code=M_CH&chapter_code=C&report_code=01"
[2]鄭詩諺, "P 型熱電材料之製程開發及模組研究," 碩士, 電機工程學系, 國立中央大學, 桃園縣, 2019. [Online]. Available: https://hdl.handle.net/11296/e3562v
[3]余柏呈, "P型鎂銀銻化合物熱電材料開發及模組製作," 碩士, 電機工程學系, 國立中央大學, 桃園縣, 2020. [Online]. Available: https://hdl.handle.net/11296/gxzxk5
[4]王柏崴, "P型鎂銀銻熱電材料之製程開發及其焊料之研究," 碩士, 電機工程學系, 國立中央大學, 桃園縣, 2021. [Online]. Available:https://hdl.handle.net/11296/b7h6wm
[5] https://zh.wikipedia.org/zh-tw/%E7%86%B1%E9%9B%BB%E6%95%88%E6%87%89
[6]陳尚謙, "準單晶碲化鉍奈米線和薄膜的熱電性質研究," 碩士, 應用物理研究所, 國立政治大學, 台北市. [Online]. Available: https://hdl.handle.net/11296/s8z2g9
[7]李俊明, "新穎硒化物Mn2Sn7Bi4Se15與In3.87Pb4.44Sb4.52Se17的合成與特性分析", 碩士, 應用化學研究所, 國立交通大學論文, 新竹市, 2010. [Online].Available: https://hdl.handle.net/11296/jpa5wh
[8] THERMOELECTRICS HANDBOOKS—MACRO TO NANO, edited by D. M. Rowe
[9]https://www.phys.sinica.edu.tw/~lowtemp/%E9%9B%99%E6%9C%88%E5%88%8A%E7%86%B1%E9%9B%BB-0302--final_check.pdf
[10]葉建弦. "固態熱電材料在廢熱回收領域之應用." 工業技術研究院綠能與環境研究所.
[11] https://pb.ps-taiwan.org/modules/news/article.php?storyid=59
[12] C. Han, Z. Li, and S. Dou, "Recent progress in thermoelectric materials," Chinese science bulletin, vol. 59, no. 18, pp. 2073-2091, 2014.
[13] B. C. Sales, D. Mandrus and R. K. Williams "Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials", Science,272,1325(1996).
[14] A.I. Hochbaum, R.Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar & P. Yang"Enhanced thermoelectric performance of rough silicon nanowires"
[15] L.D. Zhao, B.P. Zhang, W.S. Liu, and J.F. Li, (2009) "Effect of mixed grain sizes on thermoelectric performance of Bi2Te3 compound". Journal of Applied Physics, 105(2),023704.
[16] 鄭安良, "P 型熱電材料Bi0.5Sb1.5Te3之合成與分析," 碩士, 電機工程學系研究所, 國立中山大學, 高雄市, 2011. [Online]. Available: https://hdl.handle.net/11296/hkakss
[17] W.C Chou, "Electrodeposition and Characterization of Bi-Te-Se Thermoelectric Thick Films",master thesis of Depart,ent of Materials Science and Engineering College of Engineering , National Taiwan University ,2016
[18] G.J. Snyder, and E.S. Toberer, “Complex thermoelectric materials”, Nature Materials, Vol.7, pp. 105-114,(2008).
[19] Von Lukowicz, Marian, et al. "Thermoelectric generators on satellites—An approach for waste heat recovery in space." Energies 9.7 (2016): 541.
[20] C. Han, Z. Li, and S. Dou, "Recent progress in thermoelectric materials," Chinese science bulletin, vol. 59, no. 18, pp. 2073-2091, 2014.
[21]李杰, "MgAgSb系列熱電材料生長與傳輸性質研究," 碩士, 物理學系, 國立東華大學, 花蓮縣, 2015. [Online]. Available: https://hdl.handle.net/11296/2ad3hr
[22] Chan, Kuei-bo C., Lee, & Chi-Shen L. (2003). Synthesis and Characterization of New Thermoelectric Materials contain Tin . Available: http://hdl.handle.net/11536/55190.
[23] Yang, Jian. Thermoelectric Properties of CoSb3-Based Skutterudites. Diss. Boston College. Graduate School of Arts and Sciences, 2010.
[24] Terasaki, Ichiro, Yoshitaka Sasago, and Kunimitsu Uchinokura. "Large thermoelectric power in NaCo 2 O 4 single crystals." Physical Review B 56.20 (1997): R12685.
[25] R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O′quinn, "Thin-film thermoelectric devices with high room-temperature figures of merit," Nature, vol. 413, no. 6856, pp. 597-602, 2001.
[26] Li, Deyu, et al. "Thermal conductivity of individual silicon nanowires." Applied Physics Letters 83.14 (2003): 2934-2936.
[27]朱旭山. "熱電材料與元件之原理與應用." 電子與材料雜誌.
[28] Phuoc H. Le, Liao, C., Luo, C. Wei, & Leu, J. (2014). Thermoelectric properties of nanostructured bismuth-telluride thin films grown using pulsed laser deposition.
[29] C.K. Liu, Y.S. Chen, M.J. Dai, W.K. Ha , L.L. Liao" Thermoelectric Waste Heat Recovery Technology for Automotive", Industry Material Magazine, 340 (2015)
[30] G. Zhou, J.-w. Xu, and G.-h. Rao, "Hole doped α-MgAgSb as potential low temperature thermoelectric materials," Physics Letters A, vol. 383, no. 26, p. 125833, 2019.
[31] Li, Dandan, et al. "Atomic Disorders Induced by Silver and Magnesium Ion Migrations Favor High Thermoelectric Performance in α‐MgAgSb‐Based Materials." Advanced Functional Materials 25.41 (2015): 6478-6488.
[32] H. Zhao et al., "High thermoelectric performance of MgAgSb-based materials," Nano Energy, vol. 7, pp. 97-103, 2014.
[33] P. Ying et al., "High performance α-MgAgSb thermoelectric materials for low temperature power generation," Chemistry of Materials, vol. 27, no. 3, pp. 909-913, 2015.
[34] M. J. Kirkham, A. M. dos Santos, C. J. Rawn, E. Lara-Curzio, J. W. Sharp, and A. J. Thompson, "Ab initio determination of crystal structures of the thermoelectric material MgAgSb," (in English), Phys. Rev. B, Article vol. 85, no. 14, p. 7, Apr 2012, Art no. 144120, doi: 10.1103/PhysRevB.85.144120.
[35] LaLonde, Aaron D., et al. "Lead telluride alloy thermoelectrics." Materials today 14.11 (2011): 526-532.
[36] 李昂倖(2012)。碲化鉛熱電材料與銅電極之填料接合性質研究。國立臺灣師範大學機電科技學系碩士論文,台北市。 取自https://hdl.handle.net/11296/6aabga
[37] http://www.substech.com/dokuwiki/doku.php?id=spark_plasma_sintering
[38] K.T. Wojciechowski, R. Zybala, R. Mania, "High temperature CoSb3-Cu junctions, Microelectronics Reliability", 51, 1198-1202, 2011.
[39] W. P. Lin, D. E. Wesolowski, C. C. Lee, Barrier/ bonding layers on bismuth telluride (Bi2Te3) for high temperature thermoelectric modules, Materials Letters, 14 , 526-532, 2011.
[40] Kubo, M., et al. "Fabrication of layered p-type AgSbTe/sub 2/-(Bi, Sb)/sub 2/Te/sub 3/thermoelectric module and its performances." Proceedings ICT′03. 22nd International Conference on Thermoelectrics (IEEE Cat. No. 03TH8726). IEEE, 2003.
[41] 林哲緯(2011)。Bi2Te2.55Se0.45熱電材料與Cu/Ag電極之薄膜固液擴散接合研究。國立臺灣大學材料科學與工程學研究所碩士論文,台北市。 取自https://hdl.handle.net/11296/daq5fa
[42] Nakamura, Shigeyuki, Yoshihisa Mori, and Ken’ichi Takarabe. "Analysis of the microstructure of Mg2Si thermoelectric devices." Journal of electronic materials 43.6 (2014): 2174-2178.
[43] Hasezaki, K., et al. "Thermoelectric semiconductor and electrode-fabrication and evaluation of SiGe/electrode." XVI ICT′97. Proceedings ICT′97. 16th International Conference on Thermoelectrics (Cat. No. 97TH8291). IEEE, 1997.
[44] 科邁斯科技. "熱分析-DSC 熱示差掃描分析儀的原理及應用介紹." https://www.techmaxasia.com/knowledge-detail/DSC-20210208/
[45] 徐梁. "閃光導熱儀LFA原理與測試."
[46]"科學基礎研究之重要利器-掃描式電子顯微鏡(SEM)"科學研習No.52-5(May 2013)
[47] Antonis Nanakoudis (Thermo Fisher Scientific Phenom 專業工程師) "什麼是SEM?淺談掃描式電子顯微鏡技術"
https://www.kctech.com.tw/%E4%BB%80%E9%BA%BC%E6%98%AFsem%E6%B7%BA%E8%AB%87%E6%8E%83%E6%8F%8F%E5%BC%8F%E9%9B%BB%E5%AD%90%E9%A1%AF%E5%BE%AE%E9%8F%A1%E6%8A%80%E8%A1%93/
[48] https://zi.media/@twpetsearcharlinksnet/post/amyAw7.
指導教授 辛正倫 審核日期 2022-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明