博碩士論文 109521153 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:3.128.206.122
姓名 林彥倫(Yen-Lun Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於三相轉換器之被動元件在線監測與無電流感測三相整流器之系統控制
(Online Monitoring of Passive Components for Three-Phase Converters and Current-Sensorless Control of Three-Phase Rectifiers)
相關論文
★ 微電網逆變器之智慧型控制策略★ 高頻高電流之雙向直流-直流轉換器設計
★ 結合零序回授補償與無通訊之載波同步於並聯雙向交直流轉換器之環流抑制★ 三相Vienna整流器無電壓感測線性非時變直接功率控制
★ 具柔切三相六開關反流器之併網及新型垂降控制策略★ 基於無電流感測三相Vienna整流器之新型電壓判斷成分注入法於平衡及不平衡直流鏈電壓之應用
★ 基於虛擬阻抗孤島交流微電網功率分配及其電壓與頻率恢復控制策略之發展★ 應用於具儲能混合交直流微電網之雙向互連轉換器電壓控制策略
★ 具柔切三相分源逆變器與直交流電壓控制策略研製★ 考慮不平衡電源之三相整流器線性化直接 功率控制之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文提出一種改良型大功率三相逆變器直流鏈電容器的減額定評估電路,並對傳統減額定評估電路的概念進行討論。所提改良型減額定逆變器評估電路在負載平衡與負載不平衡時皆能得到與全額定三相逆變器直流鏈電容相同的電流與電壓,並且本論文將被動元件在線監測功能加入減額定評估電路中,使其在進行電容老化測試時能即時得知電容容值。進一步本文提出了新型無電流感測三相整流器之系統控制,將電感感值估測功能加入無電流感測器三相功率因數校正整流器系統中,改善了傳統無電流感測器三相功率因數校正整流器須已知輸入電感感值的需求,使其在輸入電感因為老化或其他因素發生感值變化時亦能有良好的表現,並且加入電容容值估測功能用以監控電容容值的老化現象。
最後,本文以德州儀器生產之數位信號處理器TMS320F28335與賽靈思生產之現場可程式化邏輯閘陣列Cmod A7 35T進行實作,經由模擬與電路實作驗證本論文之改良型減額定逆變器評估電路、三相轉換器之被動元件在線監測功能與新型無電流感測三相整流器之系統控制的有效性。
摘要(英) In this thesis, an improved down-scale evaluation system for capacitors utilized in high-power three-phase inverters is proposed. Some concepts of the conventional down-scale evaluation systems are discussed. The proposed improved down-scale evaluation system can derive the same DC-link capacitor current and voltage in the full-scale inverter under both balanced and unbalanced load condition. In addition, the online condition monitoring method of passive components is added to the proposed improved down-scale evaluation system, so that the capacitance value of the DC-link capacitor can be immediately known during the capacitor aging test. Furthermore, a new current sensorless control for three-phase power factor correction(PFC) rectifier system is proposed in this thesis. The inductance estimated method is added to the current sensorless three-phase PFC rectifier system, It can improve the conventional current sensorless three-phase PFC rectifier system without the demand of input inductance value. Then the system can be well controlled even if the input inductance value is changed due to aging or other factors. In addition, the capacitance estimated method is added to monitor the aging phenomenon of capacitance value.
Finally, the digital signal processor(DSP) TMS320F28335 and field programmable gate array(FPGA) Cmod A7 35T is utilized in the implementation. The simulation and experimental results can verify the feasibility of the proposed down-scale evaluation system, online condition monitoring method of passive components in the three-phase converters, and novel current sensorless three-phase PFC rectifier system.
關鍵字(中) ★ 直流鏈電容
★ 減額定評估電路
★ 被動元件
★ 在線監測
★ 無電流感測控制
關鍵字(英) ★ DC-Link Capacitors
★ Down-Scale Evaluation System
★ Passive Component
★ Online Condition Monitoring
★ Current Sensorless Control
論文目次 摘 要 I
Abstract II
誌 謝 III
目 錄 IV
圖 目 錄 VII
表 目 錄 XIII
第一章 緒 論 1
1-1研究背景與動機 1
1-2文獻探討 2
1-3本論文之貢獻 6
1-4論文大綱 8
第二章 大功率三相六開關逆變器直流鏈電容評估電路 9
2-1前言 9
2-1-1電容器的典型故障模式 10
2-1-2直流鋁質電解電容的建模 10
2-2傳統全額定與減額定逆變器直流鏈電容評估電路 11
2-2-1傳統全額定三相六開關逆變器 11
2-2-2傳統減額定三相六開關逆變器評估電路 12
2-2-3傳統減額定三相六開關逆變器評估電路之電流路徑與問題 13
2-3所提改良型減額定逆變器評估電路 15
2-3-1改良型減額定逆變器評估電路架構 15
2-3-2直流與交流分析 16
第三章 三相轉換器之被動元件在線監測 22
3-1前言 22
3-2鎖頻迴路 22
3-2-1二階廣義積分正交訊號產生器 23
3-2-2雙二階廣義積分鎖頻迴路 24
3-2-3比例諧振控制器 26
3-3逆變器之電容電感監測 27
3-3-1具被動元件監測之逆變器控制架構 28
3-3-2逆變器高頻注入與低頻注入比較 30
3-3-3逆變器之電容監測 31
3-3-4逆變器之電感監測 35
3-4整流器之電容電感監測 38
3-4-1全額定整流器與減額定整流器評估電路 38
3-4-2具被動元件監測整流器控制架構 41
3-4-3整流器高頻注入與低頻注入比較 42
3-4-4整流器之電容監測 43
3-4-5整流器之電感監測 44
第四章 無電流感測三相PFC整流器 48
4-1前言 48
4-2傳統無電流感測三相PFC整流器之分析 49
4-2-1電路分析 50
4-2-2平均方程式推導與控制架構 53
4-3所提新型無電流感測三相PFC整流器之系統控制 56
4-3-1無電流感測電感感值估測 56
4-3-2無電流感測電容容值估測 59
4-3-3新型無電流感測三相PFC整流器系統控制 61
第五章 系統架構與模擬結果 64
5-1 PSIM模擬軟體介紹 64
5-2改良型減額定逆變器評估電路模擬結果 64
5-2-1電感電流漣波之等效 67
5-2-2三相負載不平衡待測電容電流之等效 68
5-2-3低壓直流側諧波流入問題 70
5-3全額定與減額定逆變器被動元件在線監測模擬結果 71
5-3-1三相負載平衡與不平衡之全額定與減額定逆變器電容監測 75
5-3-2三相負載平衡與不平衡之全額定與減額定逆變器電感監測 80
5-4新型無電流感測三相PFC整流器之模擬結果 81
第六章 實體電路製作與量測結果 94
6-1實作電路 94
6-2改良型減額定逆變器評估電路實測結果 106
6-2-1電感電流漣波之等效 106
6-2-2三相負載不平衡待測電容電流之等效 109
6-2-3低壓直流側諧波流入問題 110
6-3全額定與減額定逆變器被動元件在線監測實測結果 111
6-3-1三相負載平衡與不平衡之全額定與減額定逆變器電容監測 113
6-3-2三相負載平衡與不平衡之全額定與減額定逆變器電感監測 117
6-4新型無電流感測三相PFC整流器之實測結果 118
第七章 結論與未來展望 130
7-1論文內容總結 130
7-2未來研究方向 130
參考文獻 132
參考文獻 [1] P. Sundararajan, M. H. M. Sathik, F. Sasongko, C. S. Tan, M. Tariq and R. Simanjorang, "Online Condition Monitoring System for DC-Link Capacitor in Industrial Power Converters," IEEE Transactions on Industry Applications, vol. 54, no. 5, pp. 4775-4785, Sept.-Oct. 2018.
[2] Kazunori Hasegawa; Ichiro Omura; Shin-ichi Nishizawa, “Design and Analysis of a New Evaluation Circuit for Capacitors Used in a High-Power Three-Phase Inverter” IEEE Trans. Industrial Electronics., vol. 63, no. 5, pp. 2679-2687, May 2016.
[3] A. M. R. Amaral and A. J. M. Cardoso, “A simple offline technique for evaluating the condition of aluminum–electrolytic–capacitors,” IEEE Trans. Ind. Electron., vol. 56, no. 8, pp. 3230–3237, Aug. 2009.
[4] A. M. R. Amaral and A. J. M. Cardoso, “Estimating aluminum electrolytic capacitors condition using a low frequency transformer together with a DC power supply,” IEEE Int. Symp. Ind. Electron. (ISIE), 2010, pp. 815–820.
[5] H. Wang and F. Blaabjerg, “Reliability of capacitors for dc-ink applications in power electronic converters—An overview,” IEEE Trans. Ind. Appl., vol. 50, no. 5, pp. 3569–3578, Sep./Oct. 2014.
[6] O. Ondel, E. Boutleux, and P. Venet, “A decision system for electrolytic capacitors diagnosis,” IEEE Power Electron. Spec. Conf. (PESC), 2004, pp. 4360–4364.
[7] M. Makdessi, A. Sari, and P. Venet, “Metallized polymer film capacitors ageing law based on capacitance degradation,” Microelectron. Rel., vol. 54, pp. 1823–1827, 2014.
[8] M. Makdessi, A. Sari, P. Venet, P. Bevilacqua, and C. Joubert, “Accelerated ageing of metallized film capacitors under high ripple currents combined with a DC voltage,” IEEE Trans. Power Electron., vol. 30, no. 5, pp. 2435–2444, May 2015.
[9] Zhaoyang Zhao, Pooya Davari, Weiguo Lu, Huai Wang, Frede Blaabjerg, “An Overview of Condition Monitoring Techniques for Capacitors in DC-Link Applications” IEEE Trans. Power Electronics, vol. 36, no. 4, April 2021.
[10] H. Li, D. Xiang, X. Han, X. Zhong, and X. Yang, “High-accuracy capacitance monitoring of DC-link capacitor in VSI systems by LC resonance,” IEEE Trans. Power Electron., vol. 34, no. 12, pp. 12200–12211, Dec. 2019.
[11] Yu Wu, Xiong Du, “A VEN Condition Monitoring Method of DC-Link Capacitors for Power Converters,” IEEE Trans. Industrial Electronics., vol. 66, no. 2, pp. 1296-1306, Feb. 2019.
[12] Thanh Hai Nguyen, Dong-Choon Lee, “Deterioration Monitoring of DC-Link Capacitors in AC Machine Drives by Current Injection” IEEE Trans. Power Electronics, vol. 30, no. 3, March 2015.
[13] Pengju Sun, Can Gong, Xiong Du, Quanming Luo, Haibo Wang, Luowei Zhou, “Online Condition Monitoring for Both IGBT Module and DC-Link Capacitor of Power Converter Based on Short-Circuit Current Simultaneously” IEEE Trans. Industrial Electronics, vol. 64, no. 5, May 2017.
[14] Yugal Gupta, Md. Waseem Ahmad, Sagar Narale, Sandeep Anand, “Health Estimation of Individual Capacitors in a Bank With Reduced Sensor Requirements” IEEE Trans. Industrial Electronics, vol. 66, no. 9, September 2019.
[15] Prasanth Sundararajan, Mohamed Halick Mohamed Sathik, Firman Sasongko, Chuan Seng Tan, Josep Pou, ,Frede Blaabjerg, Amit Kumar Gupta, “Condition Monitoring of DC-Link Capacitors Using Goertzel Algorithm for Failure Precursor Parameter and Temperature Estimation” IEEE Trans. Power Electronics, vol. 35, no. 6, June 2020.
[16] Weiyang Zhou, Mengqi Wang, Qunfang Wu, Lu Xi, Kewei Xiao, Krishna Prasad Bhat, Chingchi Chen, “Accelerated Life Testing Method of Metallized Film Capacitors for Inverter Applications,” IEEE Trans. Transportation Electrification., vol. 7, no. 1, pp. 37-49, March 2021.
[17] X. Pu, T. -H. Nguyen, D. -C. Lee and S. -G. Lee, "Capacitance estimation of DC-link capacitors for single-phase PWM converters," 2009 IEEE 6th International Power Electronics and Motion Control Conference, 2009, pp. 1656-1661, doi: 10.1109/IPEMC.2009.5157657.
[18] J. W. Dixon and B.-T. Ooi, “Indirect current control of a unity power factor sinusoidal current boost type three-phase rectifier,” IEEE Trans. Ind. Electron., vol. 35, no. 4, pp. 508–515, Nov. 1988.
[19] C.-T. Pan and T.-C. Chen, “Modeling and analysis of a three phase PWM AC-DC converter without current sensor,” IEE Proc. Inst. Elect. Eng., pt. B, vol. 140, pp. 201–208, May 1993.
[20] M. A. Santoyo-Anaya, J. R. Rodriguez-Rodriguez, E. L. Moreno-Goytia, V. Venegas-Rebollar, and N. M. Salgado-Herrera, “Current-sensorless VSC-PFC rectifier control with enhance response to dynamic and sag conditions using a single PI loop,” IEEE Trans. Power Electron., vol. 33, no. 7, pp. 6403–6415, Jul. 2018.
[21] C. Cecati, A. Dell’Aquila, A. Lecci, and M. Liserre, “Implementation issues of a fuzzy-logic-based three-phase active rectifier employing only voltage sensors,” IEEE Trans. Ind. Electron., vol. 52, no. 2, pp. 378–385, Apr. 2005.
[22] H. Chen, C. Lu and G. Li, "Design and Implementation of Three-Phase Current Sensorless Control for PFC Bridge Converter With Considering Voltage Drops of Power Semiconductors," IEEE Transactions on Industrial Electronics, vol. 65, no. 12, pp. 9234-9242, Dec. 2018.
[23] R. V. White and F. M. Miles, "Principles of fault tolerance," Proceedings of Applied Power Electronics Conference. APEC ′96, 1996, pp. 18-25 vol.1.
[24] E. Wolfgang, “Examples for failures in power electronics systems,” ECPE Tuts. Rel. Power Electron. Syst., Nuremberg, Germany, 2007.
[25] F. Blaabjerg, R. Teodorescu, M. Liserre, and A. V. Timbus, “Overview of control and grid synchronization for distributed power generation systems,” IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 1398–1409, Oct. 2006.
[26] P. R. M. Santos Filho, P. F. Seixas, P. C. Cortizo, L. Torres, and A. F. Souza, “Comparison of three single-phase PLL algorithms for UPS applications,” IEEE Trans. Ind. Electron., vol. 55, no. 8, pp. 2923–2932, Aug. 2008.
[27] M. H. J. Bollen, Understanding Power Quality Problems: Voltage Sags and Interruptions. New York: IEEE Press, 2000.
[28] P. Rodríguez, A. Luna, I. Candela, R. Mujal, R. Teodorescu and F. Blaabjerg, "Multiresonant Frequency-Locked Loop for Grid Synchronization of Power Converters Under Distorted Grid Conditions," IEEE Trans. Ind. Electron, vol. 58, no. 1, pp. 127-138, Jan. 2011.
[29] P. Rodriguez, R. Teodorescu, I. Candela, A. V. Timbus, M. Liserre, and F. Blaabjerg, “New positive-sequence voltage detector for grid synchronization of power converters under faulty grid conditions,” IEEE PESC, Jun. 2006, pp. 1–7.
[30] M. Ciobotaru, R. Teodorescu, and F. Blaabjerg, “A new single-phase PLL structure based on second order generalized integrator,” IEEE PESC, Jun. 2006.
[31] A. Yazdani and R. Iravani, “Converter switched model,” Voltage- Sourced Converters in Power Systems, 1st ed. Hoboken, NJ, USA: Wiley, Jan. 2010, pp. 30–34.
指導教授 廖益弘(Yi-Hung Liao) 審核日期 2022-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明