博碩士論文 109521166 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:13.58.39.23
姓名 范文豪(Wen-Hao Fan)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 化合物半導體元件設計零電壓切換諧振電路
(Design of Zero Voltage Switching Resonant Circuit for Compound Semiconductor Components)
相關論文
★ 功率型運算放大器積體電路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來隨著充電系統的發展,大眾開始追求高效且快速的產品,從應用
於小功率的 3C 產品,到現在電動車所需的大功率應用,業界都在持續開 發中。搭載第三代寬能隙半導體製程的功率元件,例如碳化矽(SiC)和氮 化鎵(GaN),相較於傳統矽(Si)製程,前者具備更高的電子速度及電子密 度,除了適合應用在高頻、高壓的產品外,產品體積也能達到輕量化的效 果,其特性為未來充電器發展的重要指標。
本論文介紹了一種零電壓切換諧振架構應用於降壓轉換器,為了有效的 降低電路開關切換損耗,在功率開關處引入了 LC 串聯諧振電路,達到開 關之電壓和電流產生相位差效果,避免兩者波型有重疊的現象,克服了傳 統硬開關的損耗缺點,實現軟開關技術改善開關條件,去降低開關損耗和 開關噪聲,從而提升整體電路效率。
實驗了兩種寬能隙半導體,分別為碳化矽和氮化鎵製程元件,在 200V 降壓 100V 實驗,效率分別為 89%和 92.5%,輸出電流為 1A。而 200V 降壓 50V 實驗中,氮化鎵電晶體在承受於高壓 830V 的情況下,效率表現為 86.3%,輸出電流為 2.25A。
摘要(英) In recent years, with the development of charging systems, Volkswagen has begun to pursue high-efficiency and fast products. From low-power 3C products to high-power applications required by electric vehicles, the industry is continuously developing. Power components equipped with third-generation wide-bandgap semiconductor processes, such as silicon carbide (SiC) and gallium nitride (GaN), have higher electron speed and electron density than traditional silicon (Si) processes. In addition to being used in high-frequency and high-voltage products, the product volume can also achieve a lightweight effect, and its characteristics are an important indicator for the future development of chargers.
This paper introduces a zero-voltage switching resonant architecture applied to a buck converter. In order to effectively reduce the switching loss of the circuit switch, an LC series resonant circuit is added to the power switch to achieve the phase difference effect between the voltage and current of the switch, avoiding the two The wave pattern overlaps, which overcomes the loss of traditional hard switching, realizes soft switching technology to improve switching conditions, reduces switching loss and switching noise, and improves overall circuit efficiency.
Two kinds of wide-bandgap semiconductor components, silicon carbide and gallium nitride, respectively, were stepped down from 200V to 100V, and the efficiency was 89% and 92.5%, respectively, and the output current was 1A. In the experiment of reducing the voltage from 200V to 50V, when the GaN transistor is subjected to a high voltage of 830V, the efficiency is 86.3%, and the output current is 2.25A.
關鍵字(中) ★ 零電壓切換 關鍵字(英) ★ Zero Voltage Switching
論文目次 中文摘要 ..................................................................................................................................... i
英文摘要 .................................................................................................................................... ii
致謝 ........................................................................................................................................... iii
目錄 ........................................................................................................................................... iv
圖目錄 ....................................................................................................................................... vi
表目錄 ..................................................................................................................................... viii
一.緒論 ...................................................................................................................................... 1
1-1 研究背景....................................................................................................................1
1-2 文獻回顧....................................................................................................................2
1-3 論文大鋼....................................................................................................................5
二.電源開關電路架構與分析 .................................................................................................. 6
2-1 功率電晶體材料........................................................................................................6
2-2 功率電晶體參數........................................................................................................6
2-3 驅動電路....................................................................................................................8
2-4 損耗分析....................................................................................................................9
2-4-1 切換損耗 .................................................. 9
2-4-2 導通損耗 ................................................. 11
2-4-3 驅動損耗 ................................................. 11
2-5 電源開關模式..........................................................................................................12
2-5-1 硬開關模式 ............................................... 12
2-5-2 軟開關模式 ............................................... 13
2-6 諧振電路 [22]........................................................................................................13
2-6-1 準諧振技術 ............................................... 14
2-6-2 諧振技術 ................................................. 15
三.電路架構設計與模擬 ........................................................................................................ 16
3-1 降壓轉換器操作原理..............................................................................................16
3-2 零電壓切換降壓轉換器操作原理..........................................................................21
3-3 實現零電壓切換降壓轉換器..................................................................................26
3-3-1 隔離變壓器 ...............................................
26 3-3-2 設計方法 ................................................. 29
3-3-3 元件挑選 ................................................. 30
3-4 模擬零電壓切換降壓轉換器..................................................................................32
四.電路實驗結果 .................................................................................................................... 36
4-1 實驗環境介紹..........................................................................................................36
4-2 零電壓切換架構實驗結果......................................................................................37
4-3 模擬與量測比較......................................................................................................45
五.結論 .................................................................................................................................... 48
參考論文 .................................................................................................................................. 49
參考文獻 [1] K. Shenai, "Future Prospects of Widebandgap (WBG) Semiconductor Power Switching Devices," in IEEE Transactions on Electron Devices, vol. 62, no. 2, pp. 248-257, Feb. 2015, doi: 10.1109/TED.2014.2360641.
[2] M. Asad, A. K. Singha and R. M. S. Rao, "Dead Time Optimization in a GaN-Based Buck Converter," in IEEE Transactions on Power Electronics, vol. 37, no. 3, pp. 2830-2844, March 2022, doi: 10.1109/TPEL.2021.3116126.
[3] Sanjaya Maniktala , “Switching Power Supplies A to Z”
[4] Power Supply Design Notes: hard switching and Soft switching to reduce losses ,取自 https://www.powerelectronicsnews.com/power-supply-design-notes- hard-switching-and-soft-switching-to-reduce-losses/
[5] T. Halder, "Hard and Soft Switching Geometries For Operations of the MOSFET Used For the SMPS," 2021 Devices for Integrated Circuit (DevIC), 2021, pp. 1-6, doi: 10.1109/DevIC50843.2021.9455810.
[6] P. Sojka, M. Pipiska and M. Frivaldsky, "GaN power transistor switching performance in hard-switching and soft-switching modes," 2019 20th International Scientific Conference on Electric Power Engineering (EPE), 2019, pp. 1-5, doi: 10.1109/EPE.2019.8778060.
[7] LC Oscillations and Resonance ,Joe Wolfe ,取自 https://www.animations.physics.unsw.edu.au/jw/LCresonance.html
[8] S. Hwang, D. Jung, Y. Jung, S. Lee and C. Won, "Soft-switching bi- directional DC/DC converter using a LC series resonant circuit," 2011 International Conference on Electrical Machines and Systems, 2011, pp. 1-5, doi: 10.1109/ICEMS.2011.6073638.
[9] S. H. Vali and V. Ganesh, "Bond Graph Modelling and Simulation of LC Resonant Circuit for Quasiresonant DC-DC Power Converters," 2019 4th International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT), 2019, pp. 45-49, doi: 10.1109/RTEICT46194.2019.9016937.
[10] G. Angelov, M. Andreev and G. Kunov, "Zero Voltage Switching DC-DC Buck Converter with Predictive High Current Mode Control," 2019 IEEE XXVIII International Scientific Conference Electronics (ET), 2019, pp. 1-4, doi: 10.1109/ET.2019.8878562.
[11] Ying-Chun Chuang, Hung-Shiang Chuang and Yu-Lung Ke, "Design and
Implementation of Battery Charger with Zero-Voltage-Switching Resonant
Converter for Photovoltaic Arrays," 2006 IEEE Industrial and Commercial
Power Systems Technical Conference - Conference Record, 2006, pp. 1-6, doi:
10.1109/ICPS.2006.1677296.
[12] S. Chauhan and A. K. Pandey, "Simulation of ZVS buck converter for
charging application using PSIM simulator," 2017 International Conference
on Computation of Power, Energy Information and Commuincation (ICCPEIC),
2017, pp. 809-814, doi: 10.1109/ICCPEIC.2017.8290478.
[13] Y. Chuang and Y. Ke, "A Novel High-Efficiency Battery Charger With a
Buck Zero-Voltage-Switching Resonant Converter," in IEEE Transactions on
Energy Conversion, vol. 22, no. 4, pp. 848-854, Dec. 2007, doi:
10.1109/TEC.2006.882416.
[14] Q. Tong, N. Zhong, M. Yang and D. Zhang, "A ZVS DC-DC Converter Based
on Buck Topology," 2019 IEEE International Conference of Intelligent
Applied Systems on Engineering (ICIASE), 2019, pp. 324-327, doi:
10.1109/ICIASE45644.2019.9074092.
[15] M. Kumar, M. Pattnaik and J. Mishra, "An improved ZVS-PWM buck
converter with ZCS auxiliary circuit," TENCON 2017 - 2017 IEEE Region 10
Conference, 2017, pp. 1279-1284, doi: 10.1109/TENCON.2017.8228054
[16] H. Jonokuchi, O. Nakashima, D. Hiwatari and H. Hirayama, "Zero-current
switching with LC resonant tank circuit and capacitor isolation DC-DC
converter," 2020 22nd European Conference on Power Electronics and
Applications (EPE′20 ECCE Europe), 2020, pp. P.1-P.10, doi:
10.23919/EPE20ECCEEurope43536.2020.9215877.
[17] R. Mayer, M. B. E. Kattel and S. V. G. Oliveira, "Multiphase
Interleaved Bidirectional DC/DC Converter With Coupled Inductor for
Electrified-Vehicle Applications," in IEEE Transactions on Power
Electronics, vol. 36, no. 3, pp. 2533-2547, March 2021, doi:
10.1109/TPEL.2020.3015390.
[18] D. Kim, M. Kim and B. Lee, "An Integrated Battery Charger With High
Power Density and Efficiency for Electric Vehicles," in IEEE Transactionson Power Electronics, vol. 32, no. 6, pp. 4553-4565, June 2017, doi:
10.1109/TPEL.2016.2604404.
[19] C. -Y. Oh, D. -H. Kim, D. -G. Woo, W. -Y. Sung, Y. -S. Kim and B. -K.
Lee, "A High-Efficient Nonisolated Single-Stage On-Board Battery Charger
for Electric Vehicles," in IEEE Transactions on Power Electronics, vol. 28,
no. 12, pp. 5746-5757, Dec. 2013, doi: 10.1109/TPEL.2013.2252200.
[20] Seung-Ho Han, Moon-Gyu Jeong, Seung-Kwon Yang and Han-Byul Lee,
"Performance test for EV Quick Charger," 2012 IEEE Vehicle Power and
Propulsion Conference, 2012, pp. 1516-1519, doi: 10.1109/VPPC.2012.6422590.
[21] Huaibao Wang, Xiaoyu Jia, J. Li, X. Guo, B. Wang and Xiaoyu Wang, "New
single-stage EV charger for V2H applications," 2016 IEEE 8th International
Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), 2016,
pp. 2699-2702, doi: 10.1109/IPEMC.2016.7512724.
[22] W. A. Tabisz and F. C. Lee, "Principles of quasi- and multi-resonant
power conversion techniques," 1991., IEEE International Sympoisum on
Circuits and Systems, 1991, pp. 1053-1056 vol.2, doi:
10.1109/ISCAS.1991.176546.
指導教授 陳竹一 夏勤(Jwu-E Chen Chin Hsia) 審核日期 2022-11-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明