博碩士論文 109521601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:3.15.29.73
姓名 葛蒂絲(Gadis Triandini)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以ISO 15118為基礎的雙向充電樁充電策略於家用電動車充電系統之研究
(A Study of Bidirectional EV Charging Strategy for Household EV Charging System Based on ISO 15118)
相關論文
★ 機場地面燈光更新工程 -以桃園國際機場南邊跑滑道為例★ 多功能太陽能微型逆變器之研製
★ 應用於儲能系統之智慧型太陽光電功率平滑化控制★ 利用智慧型控制之三相主動式電力濾波器的研製
★ 應用於內藏式永磁同步馬達之智慧型速度控制及最佳伺服控制頻寬研製★ 新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發
★ 同步磁阻馬達驅動系統之智慧型每安培最大轉矩追蹤控制★ 利用適應性互補式滑動模態控制於同步磁阻馬達之寬速度控制
★ 具智慧型太陽光電功率平滑化控制之微電網電能管理系統★ 高性能同步磁阻馬達驅動系統之 寬速度範圍控制器發展
★ 智慧型互補式滑動模態控制系統實現於X-Y-θ三軸線性超音波馬達運動平台★ 智慧型同動控制之龍門式定位平台及應用
★ 利用智慧型滑動模式控制之五軸主動式磁浮軸承控制系統★ 智慧型控制雙饋式感應風力發電系統之研製
★ 無感測器直流變頻壓縮機驅動系統之研製★ 應用於模組化輕型電動車之類神經網路控制六相永磁同步馬達驅動系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-1以後開放)
摘要(中) ISO 15118作為電動汽車與電動汽車供電設備(EVSE)之間通信的國際標準,在儲能之間的能量交換中發揮著重要作用。本論文分析了智能家居環境中電動汽車充電應用的 ISO 15118 標準。通常,如果連接器插入或遵循 EV 充電計劃,則 EV 家用充電器會立即開始充電過程。這種充電行為沒有考慮其他家用電器的用電量,可能會導致使用電量超過合同電量的懲罰。因此,我們提出了一種結合家庭電池儲能和家庭能源管理系統(HEMS)的靈活可控的雙向充電和放電策略,以通過MQTT通信降低電動汽車和家用電器的總電力成本。此外,仿真係統由飛鴻交流 10 kW 雙向 EV 充電器 Chroma 61860 構建,用於 EV 電池和電網系統。最後,從實驗結果來看,與正常的非受控充電系統相比,電力成本低於20%。
摘要(英) ISO 15118, as an international standard for communication between the EV and the EV supply equipment (EVSE), plays an important role in exchanging energy between energy storage. This thesis analyses the ISO 15118 standard use for e-mobility charging applications in a smart home environment. Usually, the EV home charger immediately starts the charging process if the connector plug-in or follows the EV charging schedule. This charging behavior does not consider the power consumption from other household appliances and may cause a penalty for the high used power over than contract power capacity. Therefore, we propose a flexibly controllable bidirectional charging and discharging strategy integrated with home battery energy storage and home energy management system (HEMS) to lower the total power cost of EV and household appliances over MQTT communication. Furthermore, the emulation system is constructed by Phihong AC 10 kW bidirectional EV charger, Chroma 61860, for the EV battery and power grid system. Finally, from the experimental results, the power cost is lower than 20% compared with a normal non-controlled charging system.
關鍵字(中) ★ 電動汽車供電設備 (EVSE)
★ 雙向充電
★ 家庭能源管理系統 (HEMS)
關鍵字(英) ★ ISO 15118
★ EV supply equipment (EVSE)
★ Bidirectional charging
★ Home Energy Management System (HEMS)
★ MQTT
論文目次 摘 要 i
Abstract ii
Acknowledgments iii
Contents iv
List of Figures vi
List of Tables ix
Chapter 1 INTRODUCTION 1
1.1. Background and Motivation 1
1.2. Literature Review 4
1.3. Organization of the Thesis 8
1.4. Research Method and Contributions 10
Chapter 2 SYSTEM ARCHITECTURE of EV CHARGING STATION 11
2.1. Standards for EV Charger 12
2.1.1. Conductive charger 12
2.1.2. Levels of charger 13
2.1.3. Modes of charger 15
2.1.4. Cases of charger connection 16
2.1.5. Charging plug 17
2.1.6. Cord Set Configuration of On-board Charger 20
2.2. System Architecture 25
2.3. Equipment Specification 26
2.3.1. The Bidirectional EV Charger 26
2.3.2. Electric Vehicle 31
2.3.3. Battery Energy Storage System (BESS) 32
2.3.4. Chroma 61860 Regenerative Grid Emulator 34
2.3.5. Home Energy Management System (HEMS) 36
Chapter 3 THE INTRODUCTION OF ISO 15118 EV COMMUNICATION 38
3.1. Architecture 38
3.1.1. The Document Parts of ISO 15118 39
3.2. Power Line Communication 40
3.3. SLAC Layer 41
3.3.1. Matching Process between the EV and the EVSE. 42
3.3.2. General error handling and timing constraints. 49
3.4. V2G Layer 50
3.4.1. OSI Layer 51
3.4.2. AC Charging Communication 53
3.4.3. DC Charging Communication 56
3.4.4. Bidirectional Power Transfer 57
3.4.4.1. AC Bidirectional Power Transfer Messages 57
3.4.4.2. DC Bidirectional Power Transfer Messages 58
3.5. Publication Status 60
Chapter 4 THE ANALYSIS OF BIDIRECTIONAL EV CHARGING STRATEGY 65
4.1. The Communication between The Electric Vehicle (EV) and The Electric Vehicle Supply Equipment (EVSE) 65
4.2. The Communication of Home Energy Management System 70
4.2.1. Priority Charging Strategy 77
4.2.2. Economic Charging Strategy 77
4.3. Result of Emulation 80
4.3.1. Case 1 (Simple mode with 2-segmentation model) 81
4.3.2. Case 2 (Simple mode with 3-segmentation model) 82
4.3.3. Case 3 (Normal mode with 2-segmentation model) 83
4.3.4. Case 4 (Normal mode with 3-segmentation model) 84
Chapter 5 CONCLUSION AND FUTURE PROSPECTS 89
5.1. Conclusion 89
5.2. Future Prospects 91
References 92
APPENDIX 1 96
APPENDIX 2 98
APPENDIX 3 101
VITA 103
參考文獻 [1] H. Huo, Q. Zhang, M. Q. Wang, D. G. Streets, and K. He, “Environmental Implication of Electric Vehicles in China,” Environ. Sci. Technol., vol. 44, no. 13, pp. 4856–4861, Jul. 2010.
[2] D. Wellisch, J. Lenz, A. Faschingbauer, R. Pöschl, and S. Kunze, “Vehicle-to-Grid AC Charging Station: An Approach for Smart Charging Development,” IFAC-PapersOnLine., vol. 48, no. 4, pp. 55-60, 2015.
[3] H. Ben Sassi, F. Errahimi, N,. Essbai and C. Alaoui, "V2G and Wireless V2G concepts: State of the Art and Current Challenges," 2019 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS)., pp. 1-5, 2019
[4] K. M. Tan, V. K. Ramachandaramurthy and J. Y. Yong, "Bidirectional battery charger for electric vehicle," 2014 IEEE Innovative Smart Grid Technologies - Asia (ISGT ASIA)., pp. 406-411, 2014.
[5] H. Lund and W. Kempton, “Integration of renewable energy into the transport and electricity sectors through V2G,” Energy Policy., vol. 36, pp. 3578–3587, Sep. 2008.
[6] O. Saadeh, A. Al Nawasrah, and Z. Dalala, "A Bidirectional Electrical Vehicle Charger and Grid Interface for Grid Voltage Dip Mitigation," Energies 13., no. 15: 3784. 2020.
[7] N.S. Pearre, W. Kempton, R. L. Guensler, and V. V. Elango, “Electric vehicles: How much range is required for a day’s driving?,” Transportation Research Part C: Emerging Technologies., vol. 19, no. 6, pp. 1171-1184, Dec. 2011.
[8] K.T. Chau, “Pure electric vehicles,” Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance., pp. 655-684, 2014.
[9] G. R. Parsons, M. K. Hidrue, W. Kempton, and M. P. Gardner, “Willingness to pay for vehicle-to-grid (V2G) electric vehicles and their contract terms,” Energy Economics., vol. 42, pp. 313-324, March. 2014.
[10] J. G. Pinto et al., "Bidirectional battery charger with Grid-to-Vehicle, Vehicle-to-Grid and Vehicle-to-Home technologies," IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society., pp. 5934-5939, 2013.
[11] MD. S. A. Khan, K. M. Kadir, K. S. Mahmood, Md. I. I. Alam, A. Kamal, and Md. M. Al Bashir, “Technical investigation on V2G, S2V, and V2I for next generation smart city planning,” Journal of Electronic Science and Technology., vol. 17, no. 4, Dec. 2019.
[12] G. Lacey and G. Putrus, “Smart EV Charging Schedules: Supporting the Grid and Protecting Battery Life,” IET Electrical Systems in Transportation., vol. 7. 2016.
[13] M. Howlader, A. un N. I. Saif, M. S. A. Khan, M. M. Howlader, M. Rokonuzzaman, and M. T. Hoq, “Approach for Grid Connected PV Management: Advance Solar Prediction and Enhancement of Voltage Stability Margin using FACTs Device,” presented at the 7th International Conference on Smart Grid and Clean Energy Technologies (ICSGCE), Kuala Lumpur, Malaysia., March. 2018
[14] M. Blonsky, P. Munankarmi and S. P. Balamurugan, "Incorporating Residential Smart Electric Vehicle Charging in Home Energy Management Systems," 2021 IEEE Green Technologies Conference (GreenTech)., pp. 187-194, 2021.
[15] S. Habib, M.M. Khan, F. Abbas, and H. Tang, “Assessment of electric vehicles concerning impacts, charging infrastructure with unidirectional and bidirectional chrgers, and power flow comparisons,” Int J Energy Res., vol. 42, no. 11, pp. 3416-3441, Sept. 2018.
[16] M. Yilmaz and P. T. Krein, "Review of Battery Charger Topologies, Charging Power Levels, and Infrastructure for Plug-In Electric and Hybrid Vehicles," IEEE Transactions on Power Electronics., vol. 28, no. 5, pp. 2151-2169, May 2013.
[17] P. Van den Bossche. “CHAPTER TWENTY - Electric Vehicle Charging Infrastructure,” Elsevier., pp. 517–543. 2010.
[18] D. Ronanki, A. Kelkar, and S. S. Williamson, "Extreme Fast Charging Technology—Prospects to Enhance Sustainable Electric Transportation," Energies., vol. 12, no. 19: 3721, 2019.
[19] S. Rivera, S. Kouro, S. Vazquez, S. M. Goetz, R. Lizana and E. Romero-Cadaval, "Electric Vehicle Charging Infrastructure: From Grid to Battery," IEEE Industrial Electronics Magazine., vol. 15, no. 2, pp. 37-51, June. 2021.
[20] C. Lewandowski, S. Gröning, J. Schmutzler and C. Wietfeld, "Interference analyses of Electric Vehicle charging using PLC on the Control Pilot," 2012 IEEE International Symposium on Power Line Communications and Its Applications., pp. 350-355, 2012.
[21] T. Izumi, M. Hirota, K. Hatanaka, Y. Isoyama, K. Sano, and K. Takayama, “Bidirectional Charging Unit for Vehicle-toX (V2X) Power Flow,” SEI Tech,nical Review., no. 79, Oct. 2014.
[22] F. R. Quintela, R. C. Redondo, N. R. Melchor and M. Redondo, "A General Approah to Kirchhoff′s Laws," IEEE Transactions on Education., vol. 52, no. 2, pp. 273-278, May 2009.
[23] H. Rahimi-Eichi, U. Ojha, F. Baronti and M. Chow, "Battery Management System: An Overview of Its Application in the Smart Grid and Electric Vehicles," IEEE Industrial Electronics Magazine., vol. 7, no. 2, pp. 4-16, June 2013.
[24] J.T. Liao, H. W. Huang, H. T. Yang, and D. Li, "Decentralized V2G/G2V Scheduling of EV Charging Stations by Considering the Conversion Efficiency of Bidirectional Chargers,” Energies., vol. 14,no. 4: 962, 2021.
[25] Chroma Model 61800 Series Datasheet.
[26] M. A. A, Abdalla, M. Wang, and O. Abbaker, “Two-Stage Energy Management Strategy of EV and PV Integrated Smart Home to Minimize Electricity Cost and Flatten Power Load Profile,” Energies., vol. 13, no. 23: 6387. 2020.
[27] J. Leitão, P. Gil, B. Ribeiro, and A. Cardoso, "A Survey on Home Energy Management," IEEE Access., vol. 8, pp. 5699-5722, 2020.
[28] Y. Son and K. Moon, "Home energy management system based on power line communication," 2010 Digest of Technical Papers International Conference on Consumer Electronics (ICCE)., pp. 115-116, 2010.
[29] MQTT: The Standard for IoT Messaging.
[30] ISO 15118-1:2019: Road vehicle – Vehicle-to-Grid communication interface – Part 1: Genral Information and use-case definition. Second Edition. 2019.
[31] ISO/DIS 15118-2:2018-06: Road vehicle – Vehicle-to-Grid communication interface – Part 2: Network and application protocol requirements. Second Edition. 2018.
[32] ISO 15118-3:2015: Road vehicle – Vehicle-to-Grid communication interface – Part 3: Physical and data link layer requirements. 2015.
[33] M. Mültin, "ISO 15118 as the Enabler of Vehicle-to-Grid Applications," 2018 International Conference of Electrical and Electronic Technologies for Automotive., pp. 1-6, 2018.
[34] A. Knapp, Z. Jakó, N. Sayed, “Wireless Authentication Solution and TTCN-3 based Test Framework for SO-15118 Wireless V2G Communication,” Infocommunications Journal., vol. 11, pp. 39-47. 2019.
[35] A. Majumder and J. Caffery, “Power line communication: An overview. Potentials,” IEEE., vol. 23, pp. 4 - 8. 2004.
[36] HomePlug Powerline Alliance, “Home Plug Green PHY The Standard for In-Home Smart Grid Powerline Communications,” June.2010.
[37] M. Shin, H. Kim, H. Kim, and H. Jang, “Building an Interoperability Test System for Electric Vehicle Chargers Based on ISO/IEC 15118 and IEC 61850 Standards,” Applied Sciences., vol. 6, no. 165, 2016.
指導教授 林法正(Faa-Jeng Lin) 審核日期 2022-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明