博碩士論文 109522051 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.139.83.79
姓名 邱耀德(Yao-Te Chiu)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 AIoT攝影機網路閘道器設計與實作
(Design and Implementation of AIoT Camera Network Gateway)
相關論文
★ 整合GRAFCET虛擬機器的智慧型控制器開發平台★ 分散式工業電子看板網路系統設計與實作
★ 設計與實作一個基於雙攝影機視覺系統的雙點觸控螢幕★ 智慧型機器人的嵌入式計算平台
★ 一個即時移動物偵測與追蹤的嵌入式系統★ 一個固態硬碟的多處理器架構與分散式控制演算法
★ 基於立體視覺手勢辨識的人機互動系統★ 整合仿生智慧行為控制的機器人系統晶片設計
★ 嵌入式無線影像感測網路的設計與實作★ 以雙核心處理器為基礎之車牌辨識系統
★ 基於立體視覺的連續三維手勢辨識★ 微型、超低功耗無線感測網路控制器設計與硬體實作
★ 串流影像之即時人臉偵測、追蹤與辨識─嵌入式系統設計★ 一個快速立體視覺系統的嵌入式硬體設計
★ 即時連續影像接合系統設計與實作★ 基於雙核心平台的嵌入式步態辨識系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-4以後開放)
摘要(中) 佈署基於深度學習物件偵測和追蹤應用,通常需要仰賴雲端的大型主機。隨著邊緣攝影機的數量越來越多,基於雲端運算的 AI 系統,有著頻寬消耗大、延遲長、以及功耗高等缺點,因此導致近年來邊緣運算快技術速崛起。本研究提出一個創新的 AIoT 平台,可用於佈署 AI-enabled 攝影機網路。我們將物件追蹤部署至邊緣端,藉此降低系統的時間延遲。本系統藉由彈性擴增運算單元,針對不同邊緣攝影機數量,快速調整閘道器的運算單元,以便達成藉此達成效能需求和功耗的平衡。透過攝影機網路的協同追蹤,物件在昏暗環境或是物體微小的情況,皆能夠成功偵測和追蹤。我們以行人追蹤作為實驗測試資料,得出我們的平台在網路傳輸效率上相較大型主機節省了 64%的時間,而 AI推論時間上則有 10%之效能提升,加上此一 AIoT 平台彈性架構和低功耗的優勢,非常適合應用於 AI 服務需求經常變動的環境。
摘要(英) Deployment of deep learning-based object detection and tracking applications, which typically rely on cloud-based mainframes. With the increasing number of edge cameras, cloudbased AI systems have the disadvantages of high bandwidth consumption, high latency, and high power consumption, resulting in the rapid rise of edge computing technology in recent years. This study proposes an innovative AIoT platform that can be used to deploy AI-enabled camera networks. We deploy object tracking task to the edge to reduce the latency of the system. The system is designed to achieve a balance between performance requirements and power consumption by flexibly scaling up the computing units and quickly adjusting the gateway′s computing units for different numbers of edge cameras. With the collaborative tracking of the camera network, objects can be successfully detected even if they are small or in low light environments. Using pedestrian tracking as our experimental test data, we found that our platform saves 64% of time in network transmission efficiency compared to mainframes, and has a 10% performance improvement in AI inference time. Coupling with the flexible architecture and low power consumption of this AIoT platform, makes it ideal for applications in environments where the demand for AI services change frequently.
關鍵字(中) ★ 邊緣計算
★ 攝影機網路
★ 分散式運算
關鍵字(英) ★ Edge Computing
★ Camera Network
★ Distributed Computing
論文目次 摘要 I
Abstract II
誌謝 III
圖目錄 VII
表目錄 IX
第一章、 緒論 1
1.1 研究背景 1
1.2 研究目標 3
1.3 論文架構 3
第二章、 文獻回顧 4
2.1 物件追蹤 4
2.1.1 光流法 4
2.1.2 Deep SORT 6
2.2 多攝影機偕同運作 8
2.2.1 重疊視野攝影機 8
2.2.2 非重疊視野攝影機 9
2.2.3 攝影機連結模型 10
2.3 AIoT系統架構 13
第三章、 AIoT攝影機網路系統設計 18
3.1 攝影機網路 18
3.1.1 物件追蹤與重識別 19
3.1.2 單攝影機追蹤 20
3.1.3 多攝影機物件追蹤 21
3.2 AIoT閘道器平台設計 23
3.2.1 虛擬化與容器化技術 24
3.2.2 無線傳輸與gRPC 26
3.3 AIoT攝影機網路階層式系統設計 28
3.3.1 邊緣攝影機模組 29
3.3.2 AIoT攝影機系統模組 30
3.3.3 網路傳輸模組 30
3.3.4 AIoT攝影機系統中控模組 31
3.3.5 網路負載平衡模組 32
3.3.6 攝影機網路追蹤模組 33
3.4 AIoT攝影機網路系統離散事件建模 33
3.4.1 邊緣攝影機模組離散事件建模 34
3.4.2 網路傳輸模組離散事件建模 35
3.4.3 AIoT攝影機系統模組離散事件建模 36
3.4.4 AIoT攝影機系統中控模組離散事件建模 37
3.4.5 網路負載平衡模組離散事件建模 38
3.4.6 攝影機網路追蹤模組離散事件建模 39
第四章、 AIoT攝影機網路實驗 42
4.1 實驗環境 42
4.1.1 實驗資料集 42
4.1.2 軟硬體實驗環境 44
4.2 資源消耗實驗 46
4.2.1 功耗計算實驗 47
4.2.2 穩定度實驗 48
4.2.3 邊緣攝影機影像傳輸實驗 50
4.3 彈性擴增及網路傳輸壓力測試實驗 50
4.4 AIoT攝影機網路運行實驗 52
4.4.1 AIoT攝影機網路行人追蹤實驗架構 52
4.4.2 AIoT攝影機網路行人追蹤實驗結果 53
第五章、 結論與未來展望 57
5.1 結論 57
5.2 未來展望 58
參考文獻 59
參考文獻 [1] W. Z. Khan, E. Ahmed, S. Hakak, I. Yaqoob, and A. Ahmed, "Edge computing: A survey," Future Generation Computer Systems, vol. 97, pp. 219-235, 2019.
[2] M. Taneja, N. Jalodia, J. Byabazaire, A. Davy, and C. Olariu, "SmartHerd management: A microservices-based fog computing–assisted IoT platform towards data-driven smart dairy farming," Software - Practice and Experience, vol. 49, no. 7, pp. 1055-1078, 2019.
[3] K. Fu, W. Zhang, Q. Chen, D. Zeng, and M. Guo, "Adaptive Resource Efficient Microservice Deployment in Cloud-Edge Continuum," IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 8, pp. 1825-1840, 2021.
[4] X. Ma, S. Wang, S. Zhang, P. Yang, C. Lin, and X. Shen, "Cost-Efficient Resource Provisioning for Dynamic Requests in Cloud Assisted Mobile Edge Computing," IEEE Transactions on Cloud Computing, vol. 9, no. 3, pp. 968-980, 2021.
[5] C. H. Chen and C. T. Liu, "A 3.5-tier container-based edge computing architecture," Computers and Electrical Engineering, vol. 93, pp. 107227-107227, 2021.
[6] M. Ghobaei-Arani, A. Souri, and A. A. Rahmanian, "Resource Management Approaches in Fog Computing: a Comprehensive Review," Journal of Grid Computing, vol. 18, no. 1, pp. 1-42, 2020.
[7] O. Elharrouss, N. Almaadeed, and S. Al-Maadeed, "A review of video surveillance systems," Journal of Visual Communication and Image Representation, vol. 77, 2021.
[8] M. Shorfuzzaman, M. S. Hossain, and M. F. Alhamid, "Towards the sustainable development of smart cities through mass video surveillance: A response to the COVID-19 pandemic," Sustainable Cities and Society, vol. 64, 2021.
[9] X. Bai, M. K. Yang, T. T. Huang, Z. Y. Dou, R. Yu, and Y. C. Xu, "Deep-Person: Learning discriminative deep features for person Re-Identification," PATTERN RECOGNITION, vol. 98, FEB 2020.
[10] A. E. Benrazek, B. Farou, H. Seridi, Z. Kouahla, and M. Kurulay, "Ascending hierarchical classification for camera clustering based on FoV overlaps for WMSN," IET Wireless Sensor Systems, vol. 9, no. 6, pp. 382-388, 07/26 2019.
[11] N. Narayan, N. Sankaran, S. Setlur, and V. Govindaraju, "Learning deep features for online person tracking using non-overlapping cameras: A survey," IMAGE AND VISION COMPUTING, vol. 89, pp. 222-235, SEP 2019.
[12] Y. C. Wu, C. H. Chen, Y. T. Chiu, and P. W. Chen, "Cooperative people tracking by distributed cameras network," Electronics (Switzerland), vol. 10, no. 15, 2021.
[13] W. Fang, L. Wang, and P. Ren, "Tinier-YOLO: A Real-Time Object Detection Method for Constrained Environments," IEEE Access, vol. 8, pp. 1935-1944, 2020.
[14] S. Zhou, M. Ke, and P. Luo, "Multi-camera transfer GAN for person re-identification," Journal of Visual Communication and Image Representation, vol. 59, pp. 393-400, 2019.
[15] B. Lucas and T. Kanade, An Iterative Image Registration Technique with an Application to Stereo Vision (IJCAI). 1981.
[16] N. Wojke, A. Bewley, and D. Paulus, "Simple online and realtime tracking with a deep association metric," in 2017 IEEE International Conference on Image Processing (ICIP), pp. 3645-3649, 2017.
[17] B. Du, S. Cai, and C. Wu, "Object Tracking in Satellite Videos Based on a Multiframe Optical Flow Tracker," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 12, no. 8, pp. 3043-3055, 2019.
[18] M. Elhoseny, "Multi-object Detection and Tracking (MODT) Machine Learning Model for Real-Time Video Surveillance Systems," Circuits, Systems, and Signal Processing, vol. 39, no. 2, pp. 611-630, 2020.
[19] G. Ciaparrone, F. Luque Sánchez, S. Tabik, L. Troiano, R. Tagliaferri, and F. Herrera, "Deep learning in video multi-object tracking: A survey," Neurocomputing, vol. 381, pp. 61-88, 2020.
[20] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, "Yolov4: Optimal speed and accuracy of object detection," arXiv preprint arXiv:2004.10934, 2020.
[21] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, "Simple online and realtime tracking," in 2016 IEEE International Conference on Image Processing (ICIP), pp. 3464-3468, 2016.
[22] B. Ala-Eddine, F. Brahim, and M. Kurulay, "Efficient Camera Clustering Method Based on Overlapping FoVs for WMSNs."
[23] S. K. Sonbhadra, S. Agarwal, M. Syafrullah, and K. Adiyarta, "Person tracking with non-overlapping multiple cameras," in 2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI), pp. 137-143, 2020.
[24] J. Ye, X. Yang, S. Kang, Y. He, W. Zhang, L. Huang, M. Jiang, W. Zhang, Y. Shi, M. Xia, and X. Tan, "A robust MTMC tracking system for AI-city challenge 2021," in IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 4039-4048, 2021.
[25] H. M. Hsu, J. Cai, Y. Wang, J. N. Hwang, and K. J. Kim, "Multi-Target Multi-Camera Tracking of Vehicles Using Metadata-Aided Re-ID and Trajectory-Based Camera Link Model," IEEE Transactions on Image Processing, vol. 30, pp. 5198-5210, 2021.
[26] G. Wang, Y. Wang, H. Zhang, R. Gu, and J.-N. Hwang, "Exploit the connectivity: Multi-object tracking with trackletnet," in Proceedings of the 27th ACM International Conference on Multimedia, pp. 482-490, 2019.
[27] C. Yizong, "Mean shift, mode seeking, and clustering," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 17, no. 8, pp. 790-799, 1995.
[28] Y. T. Tesfaye, E. Zemene, A. Prati, M. Pelillo, and M. Shah, "Multi-target Tracking in Multiple Non-overlapping Cameras Using Fast-Constrained Dominant Sets," International Journal of Computer Vision, vol. 127, no. 9, pp. 1303-1320, 2019/09/01 2019.
[29] Z. Zhou, X. Chen, E. Li, L. K. Zeng, K. Luo, and J. S. Zhang, "Edge Intelligence: Paving the Last Mile of Artificial Intelligence With Edge Computing," Proceedings of the Ieee, vol. 107, no. 8, pp. 1738-1762, Aug 2019.
[30] M. Satyanarayanan, "The Emergence of Edge Computing," (in English), Computer, vol. 50, no. 1, pp. 30-39, Jan 2017.
[31] S. G. Deng, H. L. Zhao, W. J. Fang, J. W. Yin, S. Dustdar, and A. Y. Zomaya, "Edge Intelligence: The Confluence of Edge Computing and Artificial Intelligence," Ieee Internet of Things Journal, vol. 7, no. 8, pp. 7457-7469, Aug 2020.
[32] X. Wang, Y. Han, V. C. M. Leung, D. Niyato, X. Yan, and X. Chen, "Convergence of Edge Computing and Deep Learning: A Comprehensive Survey," IEEE Communications Surveys and Tutorials, vol. 22, no. 2, pp. 869-904, 2020.
[33] S. Ren, K. He, R. Girshick, and J. Sun, "Faster r-cnn: Towards real-time object detection with region proposal networks," Advances in neural information processing systems, vol. 28, 2015.
[34] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778, 2016.
[35] J. Dizdarević, F. Carpio, A. Jukan, and X. Masip-Bruin, "A Survey of Communication Protocols for Internet of Things and Related Challenges of Fog and Cloud Computing Integration," ACM Comput. Surv., vol. 51, no. 6, p. Article 116, 2019.
[36] P. M. Kumar and U. D. Gandhi, "Enhanced DTLS with CoAP-based authentication scheme for the internet of things in healthcare application," The Journal of Supercomputing, vol. 76, no. 6, pp. 3963-3983, 2020/06/01 2020.
[37] C.-H. Chen, M.-Y. Lin, and X.-C. Guo, "High-level modeling and synthesis of smart sensor networks for Industrial Internet of Things," Computers & Electrical Engineering, vol. 61, pp. 48-66, 2017.
[38] P. Köhl, A. Specker, A. Schumann, and J. Beyerer, "The MTA Dataset for Multi Target Multi Camera Pedestrian Tracking by Weighted Distance Aggregation," in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 4489-4498, 2020.
指導教授 陳慶瀚(Ching-Han Chen) 審核日期 2022-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明