博碩士論文 109522062 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.238.121.7
姓名 陳嬿晴(Yan-Qing Chen)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 在有干擾的虛擬教室環境下 大人小孩的行為表現與腦神經反應的異同
(Age Difference on Attention under 3D Virtual Reality Environment with Interference)
相關論文
★ 探討Media-Pipe和Leap Motion藉由用於發展遲緩的VR系統在分層共現網路的對指手勢預測精準度比較★ 基於眼動的閱讀障礙分析與診斷
★ 使用映射模型和跨資料集遷移式學習的輕量化居家衰弱症訓練系統★ 心率生理回饋放鬆訓練對於海洛因使用疾患(HUD)生理資訊之影響分析
★ 基於深度學習模型的3D心理旋轉對認知障礙的診斷與評估★ 評估注意力偵測之穿戴式腦電電極放置有效性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究的目的是研究注意力、反應抑制和干擾抑制的年齡差異。在虛擬教室實驗中,受試者配戴頭戴式VR頭盔結合乾式電極的腦電波儀,在3D虛擬教室環境中進行一種注意力測驗(AX-CPT),並且在測驗期間會無預警地出現視聽覺干擾。我們對腦電波進行分析並使用事件相關電位(ERP)和事件相關光譜功率(ERSP)從行為和電生理學的角度觀察注意力和抑制功能的成熟。從實驗結果可以看出,成人的P3幅度較大,P3和N2潛伏期都比兒童長,說明成人在注意力和抑制方面比兒童成熟。在機器學習方面,在NOGO-D刺激下會得到最好的分類結果,也證明了成人和兒童在抑制功能上有顯著差異。綜合上述,本研究探討了任務表現和腦電圖信號的年齡差異,這樣的研究成果也可以應用於與注意力或抑制發展相關的測試或活動,並將不同年齡層的表現納入考量或基於此做更深入的研究。
摘要(英) This study investigates the age difference in attention, response inhibition, and interference suppression by performing the AX-CPT task, using HMD-VR with an EEG device under a 3D virtual reality classroom with auditory and visual interference during the task. We intend to observe the maturation of attention and inhibition from a behavioral and electrophysiological perspective using Event-related Potentials (ERPs) and Event-related spectral power (ERSP). It can be seen that the P3 amplitude of adults is larger, and both P3 and N2 latency are longer than children, which means that adults are more mature than children in terms of attention and inhibition. In terms of machine learning, the NOGO-D trials will obtain the best classification results under the NOGO-D trials. It also proved that adults and children have significant differences in inhibitory function. In conclusion, this study explored the age differences in task performance and EEG signals. It can also be applied to tests or activities related to the development of attention or inhibition, designed to consider age differences and further explored.
關鍵字(中) ★ 注意力
★ 抑制
★ 虛擬實境
★ 干擾
★ 腦電波
★ 事件相關電位
關鍵字(英) ★ Attention
★ Inhibition
★ Virtual Reality
★ Interference
★ EEG
★ Event-related potentials (ERPs)
論文目次 Table of Contents
摘要 i
Abstract ii
致謝 iii
Table of Contents iv
List of Figures vi
List of Tables vii
1. Introduction 1
1.1 Attention and its relation to age 1
1.2 Inhibition and its relation to age 2
1.3 Cognitive function and its relation to EEG 2
1.4 P300 and N200 3
1.5 Frequency bands 4
1.6 AX-CPT 5
2. Related Work 6
2.1 Age Difference in Go/NoGo task 6
3. Experimental Method 9
3.1 Equipment and software 9
3.2 Game design and distractors 10
3.3 Participants and EEG acquisition 11
3.4 EEG data processing and feature extraction 12
3.5 Dataset 14
3.6 Statistical analysis and machine learning methods 14
4. Result 17
4.1 Statistical analysis on CPT task performance 17
4.2 Statistical analysis on ERPs 18
4.2.1 The effect of inhibition (i.e., GO-D vs. NOGO-D trials) 18
4.2.2 The effect of distractions (i.e., D vs. ND trials) 19
4.3 Statistical analysis on ERSP 20
4.3.1 The effect of inhibition (i.e., GO-D vs. NOGO-D trials) 20
4.3.2 The effect of distractions (i.e., D vs. ND trials) 22
4.4 ERPs and power spectrum 24
4.5 Classify adults and children 26
5. Discussion 28
5.1 Statistical analysis on CPT task performance 28
5.2 Statistical analysis on ERPs 28
5.3 Statistical analysis on ERSP 29
5.4 ERPs and power spectrum 30
5.5 Classify adults and children 30
6. Conclusion and Future Work 31
Reference 33
Supplementary 1: GO-D vs. NOGO-D -1-
Supplementary 2: D vs. ND -11-
參考文獻 [1] Clark, J.M. (1996). Contributions of inhibitory mechanisms to unified theory in neuroscience and psychology Brain and Cognition, 30, 127–152.
[2] Y. Tian, S. Liang, D. Yao Attentional orienting and response inhibition: insights from spatial-temporal neuroimaging Neurosci. Bull., 30 (1) (2014), pp. 141-152
[3] Y. Tian, A.B. Chica, P. Xu, D. Yao Differential consequences of orienting attention in parallel and serial search: an ERP study Brain Res., 1391 (2011), pp. 81-92
[4] Plude, D. J., Enns, J. T., & Brodeur, D. (1994). The development of attention: A life-span overview. Acta Psychologica, 86, 227-272.
[5] Kail, R. (1991). Developmental change in speed of processing during childhood and adolescence. Psychological Bulletin, 109, 490-501.
[6] Huang-Pollock, C. L., Carr, T. H. & Nigg, J. T. (2002). Development of selective attention: Perceptual load influences early versus late attentional selection in children and adults. Developmental Psychology, 38, 363-375.
[7] Stelt, O. van der (2009). Selective Processing of Color and Category Information from Alphanumeric Characters in Children and Adults. Manuscript submitted for publication.
[8] Wetzel, N., Widmann, A., & Schröger, E. (2009). The cognitive control of distraction by novelty in children aged 7-8 and adults. Psychophysiology, 46, 607-616.
[9] Tipper, S. P., Bourque, T. A., Anderson, S. H., & Brehaut, J. C. (1989). Mechanisms of attention: A developmental study. Journal of Experimental Child Psychology, 48, 353-378.
[10] Harnishfeger, K.K. (1995). The development of cognitive inhibition: Theories, definitions, and research evidence. In F.N. Dempster & C.J. Brainerd (Eds.), Interference and inhibition in cognition (pp. 175–204). San Diego: Academic Press.
[11] Pfefferbaum A, Ford J, Weller BJ, Kopell BS. ERPs to response production and inhibition. Electroencephalogr Clin Neurophysiol 1985:60:423-34.
[12] Williams, B.R., Ponesse, J.S., Schachar, R., Logan, G.D., & Tannock, R. (1999). Development of inhibitory control across the lifespan. Developmental Psychology, 35, 205–213
[13] Dustman, R.E., Emmerson, R.Y., & Shearer, D.E. (1996). Life span changes in electrophysiological measures of inhibition. Brain and Cognition, 30(1), 109–126.
[14] Band, G.P.H., van der Molen, M.W., Overtoom, C.C.E., & Verbaten, M.N. (2000). The ability to activate and inhibit speeded responses: Separate developmental trends. Journal of Experimental Child Psychology, 75, 263–290.
[15] Becker, M.G., Isaac, W., & Hynd, G.W. (1987). Neuropsychological development of nonverbal behaviors attributed to “frontal lobe” functioning. Developmental Neuropsychology, 3, 275–298.
[16] Kramer, A.F., Humphrey, D.G., Larish, J.F., Logan, G.D., & Strayer, D.L. (1994). Aging and inhibition: Beyond a unitary view of inhibitory processing in attention. Psychology and Aging, 9, 491–512.
[17] Schachar, R., & Logan, G.D. (1990). Impulsivity and inhibitory control in normal development and childhood psychopathology. Developmental Psychology, 26, 710–720.
[18] Falkenstein, M., Hoormann, J., & Hohnsbein, J. (2002). Inhibition-related ERP components: Variation with modality, age, and time-on-task. Journal of Psychophysiology, 16, 167–175.
[19] Levy, F. (1980). The development of sustained attention (vigilance) and inhibition in children: Some normative data. Journal of Child Psychology and Psychiatry, 21, 77–84.
[20] N.-H. Liu, C.-Y. Chiang, and H.-C. Chu (2013), “Recognizing the degree of human attention using eeg signals from mobile sensors,” Sensors (Basel, Switzerland), vol. 13, no. 8, pp. 10 273–10 286
[21] Rossi AF, Pessoa L, Desimone R, Ungerleider LG. The prefrontal cortex and the executive control of attention. Exp Brain Res. 2009 Jan;192(3):489-97. doi: 10.1007/s00221-008-1642-z. Epub 2008 Nov 22. PMID: 19030851; PMCID: PMC2752881.
[22] Blackwood D. H. R, Muir W. J. Cognitive brain potentials and their application. The British Journal of Psychiatry. 1990;157:96–101.
[23] Herrmann, C. S., & Knight, R. T. (2001). Mechanisms of human attention: event-related potentials and oscillations. Neurosci Biobehav Rev, 25(6), 465-476. doi:10.1016/s0149-7634(01)00027-6.
[24] Näätänen, R. (1988). Implications of ERP data for psychological theories of attention. Biol Psychol, 26(1-3), 117-163. doi:10.1016/0301-0511(88)90017-8.
[25] Picton, T. W., Bentin, S., Berg, P., Donchin, E., Hillyard, S. A., Johnson, R., Jr., . . . Taylor, M. J. (2000). Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology, 37(2), 127-152.
[26] Woodman, G. F. (2010). A brief introduction to the use of event-related potentials in studies of perception and attention. Atte sychophys, 72(8), 2031-2046. doi:10.3758/app.72.8.2031
[27] Polich, J. (2012). Neuropsychology of P300. Oxford Handbook of Event-related Potential Components,159, 159–88.
[28] Picton, T. W. (1992). The P300 wave of the human event-related poten-tial. Journal of Clinical Neurophysiology, 9(4), 456–479. https:// doi. org/ 10. 1097/ 00004 691- 19921 0000- 00002
[29] Donchin E, Coles MGH. Is the P300 component a manifestation of context updating? Behav Brain Sci 1988:11:357-74.
[30] Falkenstein, M., Koshlykova, N.A., Kiroj, V.N., Hoormann, J., & Hohnsbein, J. (1995). Late ERP components in visual and auditory Go/NoGo tasks. Electroencephalography and Clinical Neurophysiology: Evoked Potentials, 96, 36–43.
[31] Teplan, M. (2002). Fundamentals of EEG measurement. Meas. Sci. Rev. 2, 1–11.
[32] DeLaRosa, B. L., Spence, J. S., Motes, M. A., To, W., Vanneste, S., Kraut, M. A., & Hart, J., Jr. (2020). Identification of selection and inhibition components in a Go/NoGo task from EEG spectra using a machine learning classifier. Brain Behav, 10(12), e01902. doi:10.1002/brb3.1902
[33] Meyers, J., McCutcheon, V. V., Pandey, A. K., Kamarajan, C., Subbie, S., Chorlian, D., . . . Porjesz, B. (2019). Early Sexual Trauma Exposure and Neural Response Inhibition in Adolescence and Young Adults: Trajectories of Frontal Theta Oscillations During a Go/No-Go Task. J Am Acad Child Adolesc Psychiatry, 58(2), 242-255.e242. doi:10.1016/j.jaac.2018.07.905
[34] Nigbur, R., Ivanova, G., & Stürmer, B. (2011). Theta power as a marker for cognitive interference. Clin Neurophysiol, 122(11), 2185-2194. doi:10.1016/j.clinph.2011.03.030
[35] Liebrand, M., Kristek, J., Tzvi, E., & Krämer, U. M. (2018). Ready for change: Oscillatory mechanisms of proactive motor control. PLoS One, 13(5), e0196855. doi:10.1371/journal.pone.0196855
[36] Zhang, Y., Chen, Y., Bressler, S. L., & Ding, M. (2008). Response preparation and inhibition: the role of the cortical sensorimotor beta rhythm. Neuroscience, 156(1), 238-246. doi:10.1016/j.neuroscience.2008.06.061
[37] Stuss, D.T. (1992). Biological and psychological development of executive function. Brain and Cognition, 20, 8–23.
[38] Johnstone, S. J., Pleffer, C. B., Barry, R. J., Clarke, A. R., & Smith, J. L. (2005). Development of inhibitory processing during the Go/NoGo task. A behavioral and event-related potential study of children and adults. Journal of Psychophysiology, 19, 11–23.
[39] Brydges, C. R., Anderson, M., Reid, C. L., & Fox, A. M. (2013). Maturation of cognitive control: Delineating response inhibition and interference suppression. PLOS ONE, 8(7), e69826.
[40] Vuillier L, Bryce D, Szücs D, Whitebread D. The Maturation of Interference Suppression and Response Inhibition: ERP Analysis of a Cued Go/Nogo Task. PLoS One. 2016 Nov 4;11(11):e0165697. doi: 10.1371/journal.pone.0165697. PMID: 27814356; PMCID: PMC5096696.
[41] Ruhnau P, Herrmann B, Maess B, Brauer J, Friederici AD and Schröger E (2013) Processing of complex distracting sounds in school-aged children and adults: evidence from EEG and MEG data. Front. Psychol. 4:717. doi: 10.3389/fpsyg.2013.00717
[42] Liza, T. (2010). Influence of Distraction on Task Performance in Children and Adults. [Master′s thesis, Tilburg University ]. Department of Developmental Psychology. http://arno.uvt.nl/show.cgi?fid=107873.
[43] Bertelson, P, & Tisseyre, F. (1969). The time-course of preparation: Confirmatory results with visual and auditory warning signals. Acta Psychologica, 30, 145-154.
[44] Hackley, S. A., & Valle-Inclán, F. (2003). Which stages of processing are speeded by a warning signal? Biological Psychology, 64, 27-45.
[45] Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of neuroscience methods, 134(1), 9-21.
[46] Espinet SD, Anderson JE, Zelazo PD. N2 amplitude as a neural marker of executive function in young children: an ERP study of children who switch versus perseverate on the Dimensional Change Card Sort. Dev Cogn Neurosci. 2012 Feb 15;2 Suppl 1(Suppl 1):S49-58. doi: 10.1016/j.dcn.2011.12.002. Epub 2011 Dec 13. PMID: 22682910; PMCID: PMC6987664.
[47] Barriga-Paulino C. I, Flores A B and Gomez. C M 2011 Developmental changes in the EEG rhythms of children and young adules: analyzed by means of correlational, brain topography and principal component analysis J. Pschophesiol. 25143-58
指導教授 葉士青 吳曉光(Shih-Ching Yeh Hsiao-Kuang Wu) 審核日期 2022-9-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明