博碩士論文 109522081 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:52.15.59.163
姓名 簡健軒(Jian-Xuan Jian)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 低軌道衛星地面整合網路之安全非正交多重存取傳輸
(Secure NOMA transmission in LEO Satellite Terrestrial Network)
相關論文
★ 基於OP-TEE的可信應用程式軟體生態系統★ 在低軌道衛星無線通訊中的CSI預測方法
★ 為多流量低軌道衛星系統提出的動態換手策略★ 基於Trustzone的智慧型設備語音隱私保護系統
★ 一種減輕LEO衛星網路干擾的方案★ TruzGPS:基於TrustZone的位置隱私權保護系統
★ 衛星地面整合網路之隨機接入前導訊號設計與偵測★ SatPolicy: 基於Trustzone的衛星政策執行系統
★ TruzMalloc: 基於TrustZone 的隱私資料保 護系統★ 衛星地面網路中基於物理層安全的CSI保護方法
★ 低軌道衛星地面網路中的DRX機制設計★ 衛星地面整合網路之基於集合系統的前導訊號設計
★ 基於省電的低軌衛星網路路由演算法★ 衛星上可重組化計算之安全FPGA動態部分可重組架構
★ 衛星網路之基於空間多樣性的前導訊號設計★ TrustCS: 基於 Trusted Firmware-M 的安全 CubeSat 韌體更新機制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 衛星廣泛的廣播覆蓋特性使其容易受到竊聽攻擊。在5G的不同潛在多址接入候選者中,非正交多址(Non-orthogonal multiple access (NOMA))是主要競爭者之一。在非正交多址,來自不同終端用戶(User Terminal (UT))的訊號被獨立編碼和調變,然後在傳輸前進行訊號疊加,接收端利用連續干擾消除(Successive Interference Cancellation (SIC))的方法來獲取用戶終端的訊息,但是,SIC的進行會帶來額外的安全威脅。本文討論了傳統SIC所面臨的威脅,並提出了一種能夠容忍衛星地面網絡中通道狀態資訊(Channel State Information (CSI))快速變化和無法獲得瞬時通道狀態資訊的安全方法,並且可以與其他物理層安全方法互相結合。
摘要(英) Satellite′s wide broadcasting coverage property make it is vulnerable to eavesdropping attacks. Among the different potential multiple access candidates for 5G, Non-Orthogonal Multiple Access (NOMA) is one of the main contenders. In Non-Orthogonal Multiple Access, signals from different user termianls (UTs) are independently coded and modulated, and then superposition before transmission, and the receiver uses the principle of Successive Interference Cancellation (SIC) to obtain UT information. However, the implementation of SIC leads to additional threats. This paper discusses the threat of conventional SIC and proposes an security method that can tolerate the rapid changes of channel state information (CSI) and the inability to obtain instantaneous CSI in satellite terrestrial networks, and can be combined with other physical layer security methods.
關鍵字(中) ★ 衛星地面網路
★ 非正交多重存取
★ 竊聽攻擊
關鍵字(英) ★ Satellite-terrestrial Networks
★ NOMA
★ Eavesdropping Attack
論文目次 中文摘要 i
Abstract ii
致謝 iii
Contents iv
List of Figures vi
List of Tables viii
1 Introduction 1
2 Related Work 3
2.1 Satellite communication security research . . . . . . . . . . . . . . . . . 3
2.2 Enhance NOMA security by CSI . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Enhance NOMA security by pre-shared message . . . . . . . . . . . . . 4
3 System Model 6
3.1 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1.1 Free Space Path Loss . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1.2 Beam Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.3 Channel Fading Coefficient . . . . . . . . . . . . . . . . . . . . 8
3.2 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 NOMA SIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4 Threat Model 12
5 Countermeasure 14
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 Pseudo Random Constellation Rotation . . . . . . . . . . . . . . . . . . 15
5.3 Generate rotation angle . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.4 Reference Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.5 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.6 Implementation of NOMA-OFDM Physical Layer Security . . . . . . . . 21
5.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.7.1 Find optimal power allocation factor . . . . . . . . . . . . . . . . 23
5.7.2 Impact on SINR and Secrecy Metrics . . . . . . . . . . . . . . . 26
5.7.3 BER analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6 Conclusion 32
Bibliography 33
參考文獻 [1] A. Abdi, W. Lau, M.-S. Alouini, and M. Kaveh, “A new simple model for land mobile
satellite channels: first- and second-order statistics,” IEEE Transactions on Wireless
Communications, vol. 2, no. 3, pp. 519–528, 2003.
[2] L. Dai, B. Wang, Y. Yuan, S. Han, I. Chih-lin, and Z. Wang, “Non-orthogonal multiple
access for 5g: solutions, challenges, opportunities, and future research trends,”
IEEE Communications Magazine, vol. 53, no. 9, pp. 74–81, 2015.
[3] S. M. R. Islam, N. Avazov, O. A. Dobre, and K.-s. Kwak, “Power-domain nonorthogonal
multiple access (noma) in 5g systems: Potentials and challenges,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 2, pp. 721–742, 2017.
[4] Y. Liu, H.-H. Chen, and L. Wang, “Physical layer security for next generation wireless
networks: Theories, technologies, and challenges,” IEEE Communications Surveys
& Tutorials, vol. 19, no. 1, pp. 347–376, 2017.
[5] B. Li, Z. Fei, C. Zhou, and Y. Zhang, “Physical-layer security in space information
networks: A survey,” IEEE Internet of Things Journal, vol. 7, no. 1, pp. 33–52, 2020.
[6] M. G. Schraml, R. T. Schwarz, and A. Knopp, “Multiuser mimo concept for physical
layer security in multibeam satellite systems,” IEEE Transactions on Information
Forensics and Security, vol. 16, pp. 1670–1680, 2021.
[7] Z. Lin, M. Lin, J.-B. Wang, Y. Huang, and W.-P. Zhu, “Robust secure beamforming
for 5g cellular networks coexisting with satellite networks,” IEEE Journal on
Selected Areas in Communications, vol. 36, no. 4, pp. 932–945, 2018.
[8] J. Lei, Z. Han, M. n. Vazquez-Castro, and A. Hjorungnes, “Secure satellite communication
systems design with individual secrecy rate constraints,” IEEE Transactions
on Information Forensics and Security, vol. 6, no. 3, pp. 661–671, 2011.
[9] T. Zhao, G. Li, G. Zhang, and C.-X. Zhang, “Security-enhanced user pairing for
miso-noma downlink transmission,” in 2018 IEEE Global Communications Conference
(GLOBECOM), 2018, pp. 1–6.
[10] Y. Li, M. Jiang, Q. Zhang, Q. Li, and J. Qin, “Secure beamforming in downlink miso
nonorthogonal multiple access systems,” IEEE Transactions on Vehicular Technology,
vol. 66, no. 8, pp. 7563–7567, 2017.
[11] L. Lv, Z. Ding, Q. Ni, and J. Chen, “Secure miso-noma transmission with artificial
noise,” IEEE Transactions on Vehicular Technology, vol. 67, no. 7, pp. 6700–6705,
2018.
[12] N. Yang, M. Elkashlan, T. Q. Duong, J. Yuan, and R. Malaney, “Optimal transmission
with artificial noise in misome wiretap channels,” IEEE Transactions on Vehicular
Technology, vol. 65, no. 4, pp. 2170–2181, 2016.
[13] X. Zhou and M. R. McKay, “Secure transmission with artificial noise over fading
channels: Achievable rate and optimal power allocation,” IEEE Transactions on
Vehicular Technology, vol. 59, no. 8, pp. 3831–3842, 2010.
[14] N. Horiike, H. Kitagawa, E. Okamoto, and T. Yamamoto, “Chaos mimo-based
downlink non-orthogonal multiple access scheme with physical layer security,”
in 2018 15th IEEE Annual Consumer Communications & Networking Conference
(CCNC), 2018, pp. 1–7.
[15] I. Al-Musawi, W. Al-Hussaibi, Y. H. Tahir, and F. Ali, “Chaos-based secure powerdomain
noma for wireless applications,” in 2020 23rd International Symposium on
Wireless Personal Multimedia Communications (WPMC), 2020, pp. 1–6.
[16] Y. Masuda, E. Okamoto, K. Ito, and T. Yamamoto, “An uplink non-orthogonal multiple
access scheme having physical layer security based on chaos modulation,” in
2019 International Conference on Information Networking (ICOIN), 2019, pp. 136–
140.
[17] Y.-C. Tung, S. Han, D. Chen, and K. G. Shin, “Vulnerability and protection of channel
state information in multiuser mimo networks,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, 2014, p. 775–786.
[18] Y. Yang, Y. Chen, W. Wang, and G. Yang, “Securing channel state information in
multiuser mimo with limited feedback,” IEEE Transactions on Wireless Communications,
vol. 19, no. 5, pp. 3091–3103, 2020.
[19] X. Zhang and E. W. Knightly, “csisnoop : Inferring channel state information in
multi-user mimo wlans,” IEEE/ACM Transactions on Networking, vol. 27, no. 1,
pp. 231–244, 2019.
[20] S. Ribouh, K. Phan, A. V. Malawade, Y. Elhillali, A. Rivenq, and M. A. A.
Faruque, “Channel state information-based cryptographic key generation for intelligent
transportation systems,” IEEE Transactions on Intelligent Transportation Systems,
vol. 22, no. 12, pp. 7496–7507, 2021.
[21] System Tool 1- 11, Analytical Graphics, Inc., 2019, [Online; accessed 27-July-2020].
[Online]. Available: https://www.agi.com/products/stk
[22] E. C. Cejudo, H. Zhu, and O. Alluhaibi, “On the power allocation and constellation
selection in downlink noma,” in 2017 IEEE 86th Vehicular Technology Conference
(VTC-Fall), 2017, pp. 1–5.
[23] X. Liu, Z. Chen, Y. Wang, F. Zhou, Y. Luo, and R. Q. Hu, “Ber analysis of nomaenabled
visible light communication systems with different modulations,” IEEE
Transactions on Vehicular Technology, vol. 68, no. 11, pp. 10 807–10 821, 2019.
指導教授 張貴雲(Guey-Yun Chang) 審核日期 2022-8-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明