博碩士論文 109522132 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:141 、訪客IP:18.188.20.56
姓名 陳仁傑(Jen-Chieh Chen)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 非地面網路中基於位置的隨機接入分配方法
(Location based Preamble Allocation for Non-Terrestrial Network)
相關論文
★ 一種減輕LEO衛星網路干擾的方案★ 萃取駕駛人在不同環境之駕駛行為方法
★ TrustFADE: 針對可程式化邏輯區塊之安全認證方法★ 捷徑問題在特殊圖形上之演算研究
★ 行動電腦教室與其管理系統的設計與建置★ 蛋白質體視覺化系統之實作
★ 最小切割樹群聚演算法極端情形之研究★ 教室內應用無線科技之一對一數位學習模式
★ 蛋白質交互作用網路之視覺化系統★ 以賓果式遊戲輔助技巧熟練之數位學習環境設計與實作
★ 蛋白質註解的三維視覺化工具★ Joyce 2:一個在一對一數位教室環境下之小組競爭遊戲
★ 同儕計算網路上內文散佈演算法之實作與效能評估★ 在直角多邊形上使用基因演算法畫樹之研究
★ 經由潛在語義的線索從蛋白質交互作用網路進行蛋白質功能的預測★ 從生物文件中萃取出蛋白質或基因之名稱
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) UE 執行隨機接入過程以建立與 eNB 的無線電鏈路。由於用戶的
隨機性和無線環境的複雜性,這種接入的發起和使用的資源也是隨機
的,這使得終端與網絡建立通信連接成為可能。物聯網傳感器的數量
最近顯著增加。如果多個設備同時嘗試隨機訪問,可能會發生 RA 過
載。非陸地網絡(NTN)可以成為減輕海量接入負載並覆蓋大區域的
潛在解決方案。特別是有前途的低地球軌道(LEO)衛星地面網絡已
被考慮。由於衛星環境的獨特特性,該系統的主要挑戰之一是適應物
聯網設備的大量隨機訪問 (RA) 請求,同時最大限度地減少其訪問過
載。以前的工作主要集中在地面網絡上。他們經常通過 ACB 因子控制
隨機接入信道 (RACH) 資源。然而,這些作品並沒有在短時間內以相
同的物聯網設備服務質量 (QoS) 解決海量訪問問題。它沒有考慮 LEO
場景中的時變多普勒頻移和傳播延遲。
在我們的文章中,我們專注於利用 LEO 衛星場景中物聯網設備的
位置來分配前導碼。通過基於區域分配前導碼,我們減輕了 RA 過載。
我們建立了馬爾可夫過程模型來分析隨機訪問負載。結果表明,我們
的方法可以更有效地減少 LEO 場景中的 RA 負載。
摘要(英) The random access procedure is performed for the UE to establish a radio link with the eNB. Due to the randomness of users and the complexity of the wireless environment, the initiation of this access and the resources used are
also random, which makes random access (RA) possible for the terminal to establish a communication connection with the network.
The number of IoT sensors is rising significantly recently. If many devices try random access simultaneously, the RA overload may happen. NonTerrestrial Network (NTN) can be a potential solution for alleviating the massive access load and reach the large region. Especially the promising Low
Earth Orbit (LEO) satellite terrestrial network has been considered. Due to unique characteristics of satellite environment, one of the main challenges in this system is to accommodate massive random access (RA) requests of IoT
devices while minimizing their access overload. Previous works focused on terrestrial network. They often control Random Access Channel (RACH) resources by ACB factor. However, the works did not solve the massive access
within a short time with the same Quality of Service (QoS) of IoT devices. It did not consider the time-varying Doppler shift and propagation delay in LEO scenarios. In our article, we focused on allocating preambles by utilizing the
location of IoT devices in LEO satellite scenarios. By allocating the preambles based on the region, we alleviate the RA overload. We build the Markov process model for analysing random access load. The results show that our
methodology is more efficient to reduce the RA load in LEO scenarios.
關鍵字(中) ★ 非陸地網絡
★ 物聯網
★ 隨機接入程序
關鍵字(英) ★ Non Terrestrial Network
★ Internet of Thing
★ Random Access procedure
論文目次 中文摘要 i
Abstract ii
Contents iii
List of Figures v
List of Tables vi
1 Introduction 1
2 Related Work 4
2.1 System level modification 4
2.2 Simplify RA procedure 4
2.3 RACH resource control 5
2.3.1 ACB scheme 5
2.3.2 RACH resource separation 5
2.3.3 Slotted access scheme 6
2.3.4 Dynamic allocation of RACH resources 6
2.3.5 MTC specific backoff 6
3 Preliminary 9
3.1 Satellite scenarios 9
3.2 Random Access Procedure 10
3.2.1 Contention-based random access 10
3.2.2 Contention-free random access 11
3.3 Doppler estimation and pre-compensating 11
4 Methodology 13
5 Random Access Load Analysis 18
5.1 RA state and Transition Probability 19
5.2 Stationary Probability 21
5.3 Holding Time 22
6 Performance Evaluation 24
7 Conclusion 28
Bibliography 29
參考文獻 [1] IoT and non-IoT connections worldwide 2010-2025, Mar. 2021.
[2] Study on RAN Improvements for Machine-type Communications, 3GPP, Oct. 2010, TR 37.868 V0.6.2.
[3] “Performance analysis of access class barring for next generation iot devices,” Alexandria Engineering Journal, vol. 60, no. 1, pp. 615–627, 2021. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S1110016820305123
[4] F. Ghavimi and H.-H. Chen, “M2m communications in 3gpp lte/lte-a networks: Architectures, service requirements, challenges, and applications,” IEEE Communications Surveys & Tutorials, vol. 17, no. 2, pp. 525–549, 2015.
[5] Solutions for NR to support non-terrestrial networks(NTN),, 3GPP, Jan. 2020, TR 38.821 V16.0.0.
[6] J. Kim, S. Kim, T. Taleb, and S. Choi, “Rapid: Contention resolution based random access using context id for iot,” IEEE Transactions on Vehicular Technology, vol. 68, no. 7, pp. 7121–7135, 2019.
[7] O. Kodheli, N. Maturo, S. Chatzinotas, S. Andrenacci, and F. Zimmer, “On the random access procedure of nb-iot non-terrestrial networks,” in 2020 10th Advanced
Satellite Multimedia Systems Conference and the 16th Signal Processing for Space
Communications Workshop (ASMS/SPSC), 2020, pp. 1–8.
[8] On 2-step random access procedure, 3GPP, Jan. 2017, r1-1700652.
[9] NR 2-step random access procedure, 3GPP, Jan. 2017, r1-1700892.
[10] A. Laya, L. Alonso, and J. Alonso-Zarate, “Is the random access channel of lte and lte-a suitable for m2m communications? a survey of alternatives,” IEEE Communications Surveys & Tutorials, vol. 16, no. 1, pp. 4–16, 2014.
[11] A. H. E. Fawal, A. Mansour, F. Le Roy, D. Le Jeune, and A. Hamié, “Rach overload congestion mechanism for m2m communication in lte-a: Issues and approaches,” in
2017 International Symposium on Networks, Computers and Communications (ISNCC), 2017, pp. 1–6.
[12] S. Duan, V. Shah-Mansouri, Z. Wang, and V. W. S. Wong, “D-acb: Adaptive congestion control algorithm for bursty m2m traffic in lte networks,” IEEE Transactions
on Vehicular Technology, vol. 65, no. 12, pp. 9847–9861, 2016.
[13] M. Tavana, V. Shah-Mansouri, and V. W. Wong, “Congestion control for bursty m2m traffic in lte networks,” in 2015 IEEE International Conference on Communications
(ICC), 2015, pp. 5815–5820.
[14] J. Kim, S. Kim, T. Taleb, and S. Choi, “Rapid: Contention resolution based random
access using context id for iot,” IEEE Transactions on Vehicular Technology, vol. 68,
no. 7, pp. 7121–7135, 2019.
[15] H. Chelle, M. Crosnier, R. Dhaou, and A.-L. Beylot, “Adaptive load control for
iot based on satellite communications,” in 2018 IEEE International Conference on
Communications (ICC), 2018, pp. 1–7.
[16] B. Zhao, X. Dong, G. Ren, and J. Liu, “Optimal user pairing and power allocation
in 5g satellite random access networks,” IEEE Transactions on Wireless Communications, vol. 21, no. 6, pp. 4085–4097, 2022.
[17] J. Lin, Z. Hou, Y. Zhou, L. Tian, and J. Shi, “Map estimation based on doppler characterization in broadband and mobile leo satellite communications,” in 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), 2016, pp. 1–5.
[18] X. Lin, Z. Lin, S. E. Löwenmark, J. Rune, R. Karlsson, and Ericsson, “Doppler shift estimation in 5g new radio non-terrestrial networks,” in 2021 IEEE Global Communications Conference (GLOBECOM), 2021, pp. 1–6.
[19] K. Zhou and N. Nikaein, “Low latency random access with tti bundling in lte/lte-a,” in 2015 IEEE International Conference on Communications (ICC), 2015, pp. 2257–
2263.
[20] L. Zhou, H. Xu, H. Tian, Y. Gao, L. Du, and L. Chen, “Performance analysis of power saving mechanism with adjustable drx cycles in 3gpp lte,” in 2008 IEEE 68th
Vehicular Technology Conference, 2008, pp. 1–5.
[21] NR control plane latency in new RRC state, 3GPP, Oct. 2016, r2-166236.
指導教授 何錦文(Chin-Wen Ho) 審核日期 2022-9-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明