博碩士論文 109522142 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.14.6.194
姓名 賴怡呈(Yi-Cheng Lai)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 衛星地面整合網路之基於集合系統的前導訊號設計
(Quorum-based Preamble Design for Satellite-Terrestrial Networks)
相關論文
★ 基於OP-TEE的可信應用程式軟體生態系統★ 在低軌道衛星無線通訊中的CSI預測方法
★ 為多流量低軌道衛星系統提出的動態換手策略★ 基於Trustzone的智慧型設備語音隱私保護系統
★ 一種減輕LEO衛星網路干擾的方案★ TruzGPS:基於TrustZone的位置隱私權保護系統
★ 衛星地面整合網路之隨機接入前導訊號設計與偵測★ SatPolicy: 基於Trustzone的衛星政策執行系統
★ TruzMalloc: 基於TrustZone 的隱私資料保 護系統★ 衛星地面網路中基於物理層安全的CSI保護方法
★ 低軌道衛星地面整合網路之安全非正交多重存取傳輸★ 低軌道衛星地面網路中的DRX機制設計
★ 基於省電的低軌衛星網路路由演算法★ 衛星上可重組化計算之安全FPGA動態部分可重組架構
★ 衛星網路之基於空間多樣性的前導訊號設計★ TrustCS: 基於 Trusted Firmware-M 的安全 CubeSat 韌體更新機制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 低軌道(low-earth orbit, LEO)衛星覆蓋範圍廣、移動速度快的特點,導致時間延遲不確定性、都卜勒偏移,對隨機接入(random access, RA)前導訊號(preamble)的傳輸造成影響,這將導致時間延遲估計不正確和前導訊號檢測率不佳。為了解決這個問題,如果用戶端在上行傳輸時沒有進行時間和頻率偏移的補償,則需要加強物理隨機接入通道格式和前導訊號。現有的方法是基於更大的子載波間距(subcarrier spacing, SCS)和重複多個扎德奧夫-朱(Zadoff-Chu, ZC) 序列,不然就是使用多個具有不同根的ZC序列。前者對子載波間距要求高,後者需要使用很多對根,根可能會不夠。在本文中,我們採用後一種方法。為了解決根不足的問題,我們提出了一種基於集合系統(quorum)的隨機機入前導訊號設計。通過最少的同步時間,採用基於quorum的空符號插入來生成更多的前導訊號。模擬結果驗證了新的前導訊號設計在低軌道衛星通訊環境中的有效性,並且能在大幅載波頻率偏移下維持前導訊號偵測的效果,以及在多用戶場景下有很好的效能。
摘要(英) The characteristics of broad coverage, fast-moving speed of LEO results in delay uncertainty and Doppler shift to random access (RA) preamble, which will lead to poor time estimation and preamble detection rate. To address this issue, in case pre-compensation of timing and frequency offset is not performed at the user side for UL transmission, enhanced PRACH formats and/or preamble sequences are needed. Existing approaches either a single Zadoff-Chu (ZC) sequence based on larger subcarrier spacing (SCS) and repetition number, or multiple ZC sequences with different roots. The former requires high SCS, while the latter is required to specify new root pairs, and there may not be enough root pairs. In this paper, we adopt the latter approach. To solve insufficient root issue, we proposed a quorum-based RA preamble approach. By the least time to synchronization, quorum-based null symbol insertion is adopted to generate more preambles. The simulation result validates the effectiveness of the new preamble in a LEO satellite communication environment, and reveal that the proposed method can achieve the robustness for CFO and provide outstanding performance improvements especially in multi-user scenarios.
關鍵字(中) ★ 隨機接入
★ 前導訊號
★ 都卜勒偏移
關鍵字(英)
論文目次 1 Introduction 1
2 Related Work 4
2.1 Preamble Design with Single Root ZC Sequence . . . . . . . . . . . . . 5
2.2 Preamble Design with Multiple Root ZC Sequence . . . . . . . . . . . . 7
2.3 Preamble Design with M-Sequence . . . . . . . . . . . . . . . . . . . . . 7
2.4 Preamble Design with Scrambled Sequence . . . . . . . . . . . . . . . . 8
3 Preliminary 9
3.1 RACH Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Zadoff-Chu Sequences as RA Preamble for STN . . . . . . . . . . . . . 10
3.3 Correlation Properties of ZC Sequences . . . . . . . . . . . . . . . . . . 10
3.4 Analysis of Correlation Property Affected by CFO . . . . . . . . . . . . 10
3.5 The Quorum System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4 System Model 13
4.1 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Concatenated ZC Sequence . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Received Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5 Methodology 15
5.1 Design Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Proposed Preamble Design . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2.1 Root Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2.2 Peak Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3 Preamble Detection Mechanism . . . . . . . . . . . . . . . . . . . . . . 18
5.3.1 PDP Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3.2 Preamble Search . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3.3 TA Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6 Simulation 21
6.1 Impact of SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.2 Impact of Normalized CFO . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.3 Impact of Multi-user . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7 Conclusion 26
參考文獻 [1] Solutions for NR to support non-terrestrial networks (NTN), 3GPP TS 38.821 V16.1.0, May. 2021.
[2] NR; Physical channels and modulation, 3GPP TS 38.211 V17.1.0, Mar. 2022.
[3] NR; Study on New Radio (NR) to support non-terrestrial networks, 3GPP TS 38.811 V15.4.0, Sep. 2020.
[4] C. Zhang, W. Cao, Z. Yang, K. Tian, and N. Zhang, “Random access preamble design for large frequency shift in satellite communication,” IEEE 2nd 5G World Forum (5GWF), pp. 659–664, Nov. 2019.
[5] Final Report of 3GPP TSG RAN WG1 #98bis v2.0.0, MCC, document R1-1913275, TSGRAN WG1 #98bis, Nov. 2019.
[6] M. Hua, M. Wang, W. Yang, X. You, F. Shu, J. Wang, W. Sheng, and Q. Chen, “Analysis of the frequency offset effect on random access signals,” IEEE Transactions on communications, vol. 61, no. 11, pp. 4728–4740, Sep. 2013.
[7] G. Cui, Y. He, P. Li, and W. Wang, “Enhanced timing advanced estimation with symmetric zadoff-chu sequences for satellite systems,” IEEE Communications Letters, vol. 19, no. 5, pp. 747–750, Mar. 2015.
[8] L. Zhen, H. Qin, B. Song, R. Ding, X. Du, and M. Guizani, “Random access preamble design and detection for mobile satellite communication systems,” IEEE Journal
on Selected Areas in Communications, vol. 36, no. 2, pp. 280–291, Feb. 2018.
[9] L. Zhen, A. K. Bashir, K. Yu, Y. D. Al-Otaibi, C. H. Foh, and P. Xiao, “Energyefficient random access for leo satellite-assisted 6g internet of remote things,” IEEE Internet of Things Journal, vol. 8, no. 7, pp. 5114–5128, Oct. 2020.
[10] H. Yizhou, C. Gaofeng, L. Pengxu, C. Ruijun, and W. Weidong, “Timing advanced estimation algorithm of low complexity based on dft spectrum analysis for satellite system,” China Communications, vol. 12, no. 4, pp. 140–150, Apr. 2015.
[11] L. Zhen, T. Sun, G. Lu, K. Yu, and R. Ding, “Preamble design and detection for 5g enabled satellite random access,” IEEE Access, vol. 8, pp. 49 873–49 884, Mar. 2020.
[12] G. Schreiber and M. Tavares, “5g new radio physical random access preamble design,” IEEE 5G World Forum (5GWF), pp. 215–220, Nov. 2018.
[13] R.-A. Pitaval, B. M. Popovic, F. Berggren, and P. Wang, “Overcoming 5g prach capacity shortfall by combining zadoff-chu and m-sequences,” IEEE International Conference on Communications (ICC), pp. 1–6, Jul. 2018.
[14] B. M. Popovic, “Quasi-orthogonal supersets,” IEEE Information Theory Workshop, pp. 155–159, Oct. 2011.
[15] NR; Radio Resource Control (RRC); Protocol specification, 3GPP TS 38.331 V16.8.0, Mar. 2022.
[16] On PRACH sequence for NTN, Intel, document R1-1912212, TSGRAN WG1 #99, Nov. 2019.
[17] RACH Procedure and UL Timing Control for NTN, Qualcomm, document R1-1911115, TSGRAN WG1 #98bis, Oct. 2019.
指導教授 張貴雲(Guey-Yun Chang) 審核日期 2022-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明