參考文獻 |
Acosta, M., Passelègue, F.X., Schubnel, A. et al. Dynamic weakening during earthquakes controlled by fluid thermodynamics. Nat. Commun 9, 3074 (2018). https://doi.org/10.1038/s41467-018-05603-9
Aretusini, S., Meneghini, F., Spagnuolo, E., Harbord, C. W., & Di Toro, G. (2021). Fluid pressurization and earthquake propagation in the Hikurangi subduction zone. Nature communications, 12(1), 1-8.
Brantut, N., Schubnel, A., Corvisier, J., & Sarout, J. (2010). Thermochemical pressurization of faults during coseismic slip. Journal of Geophysical Research: Solid Earth, 115(B5).
Brantut, N.; Schubnel, A.; Rouzaud, J.-N.; Brunet, F.; Shimamoto, T. (2008). High-velocity frictional properties of a clay-bearing fault gouge and implications for earthquake mechanics. Journal of Geophysical Research, 113(B10), B10401–. doi:10.1029/2007jb005551
Chen, J., Niemeijer, A., Yao, L., & Ma, S. (2017). Water vaporization promotes coseismic fluid pressurization and buffers temperature rise. Geophysical Research Letters, 44(5), 2177-2185.
Chen, Wen-Shan; Chung, Sun-Lin; Chou, Hsien-Yuan; Zugeerbai, Zul; Shao, Wen-Yu; Lee, Yuan-Hsi (2017). A reinterpretation of the metamorphic Yuli belt: Evidence for a middle-late Miocene accretionary prism in eastern Taiwan. Tectonics, 36(2), 188–206. doi:10.1002/2016TC004383
De Paola, N.; Hirose, T.; Mitchell, T.; Di Toro, G.; Viti, C.; Shimamoto, T. (2011). Fault lubrication and earthquake propagation in thermally unstable rocks. Geology, 39(1), 35–38. doi:10.1130/G31398.1
Di Toro, G. Han, R.; Hirose, T.; De Paola,; N. Nielsen, S.; Mizoguchi, K.; Ferri, F.; Cocco, M.; Shimamoto, T. (2011). Fault lubrication during earthquakes. 471(7339), 494–498. doi:10.1038/nature09838
Di Toro, G., Hirose, T., Nielsen, S., Pennacchioni, G., & Shimamoto, T. (2006). Natural and experimental evidence of melt lubrication of faults during earthquakes. science, 311(5761), 647-649.
Di Toro, Giulio; Goldsby, David L.; Tullis, Terry E. (2004). Friction falls towards zero in quartz rock as slip velocity approaches seismic rates. 427(6973), 436–439. doi:10.1038/nature02249
Evans, B. W.; Hattori, K.; Baronnet, A. (2013). Serpentinite: What, Why, Where? Elements, 9(2), 99–106. doi:10.2113/gselements.9.2.99
Faulkner, D. R.; Sanchez-Roa, C.; Boulton, C.; den Hartog, S. A. M. (2018). Pore-fluid Pressure Development in Compacting Fault Gouge in Theory, Experiments, and Nature. Journal of Geophysical Research: Solid Earth. doi:10.1002/2017JB015130
Goldsby, D. L., and T. E. Tullis (2002). Low frictional strength of quartz rocks at subseismic slip rates, Geophys. Res. Lett., 29(17), 1844, doi:10.1029/2002GL015240.
Goldsby, D. L.; Tullis, T. E. (2011). Flash Heating Leads to Low Frictional Strength of Crustal Rocks at Earthquake Slip Rates. Science, 334(6053), 216–218. doi:10.1126/science.1207902
Han, R., Hirose, T., & Shimamoto, T. (2010). Strong velocity weakening and powder lubrication of simulated carbonate faults at seismic slip rates. Journal of Geophysical Research: Solid Earth, 115(B3).
Han, R., Shimamoto, T., Hirose, T., Ree, J. H., & Ando, J. I. (2007). Ultralow friction of carbonate faults caused by thermal decomposition. Science, 316(5826), 878-881.
Hannah Ritchie and Max Roser (2014) - "Natural Disasters". Published online at OurWorldInData.org. Retrieved from: ′https://ourworldindata.org/natural-disasters′ [Online Resource]
Hirose, Takehiro and Bystricky, Misha (2007). Extreme dynamic weakening of faults during dehydration by coseismic shear heating. Geophysical Research Letters, 34(14), L14311–. doi:10.1029/2007gl030049
Hirose, Takehiro and Shimamoto, Toshihiko (2005). Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting. Journal of Geophysical Research, 110(B5), B05202–. doi:10.1029/2004jb003207
Hung, C. C., Kuo, L. W., Spagnuolo, E., Wang, C. C., Di Toro, G., Wu, W. J., ... & Hsieh, P. S. (2019). Grain fragmentation and frictional melting during initial experimental deformation and implications for seismic slip at shallow depths. Journal of Geophysical Research: Solid Earth, 124(11), 11150-11169.
Hyndman, R.D., and Peacock, S.M. (2003). Serpentinization of the forearc mantle: Earth and Planetary Science Letters, v. 212, p. 417–432, doi:10.1016/S0012-821X(03)00263-2.
Kawano, S.; Katayama, I.; Okazaki, K. (2011). Permeability anisotropy of serpentinite and fluid pathways in a subduction zone. Geology, 39(10), 939–942. doi:10.1130/G32173.1Kohli, A. H., Goldsby, D. L., Hirth, G. & Tullis, T. (2011). Flash weakening of serpentinite at near-seismic slip rates. J. Geophys. Res. Solid Earth 116, 1–18.
Kuo, L.W., Hung, C.C., Li, H., Aretusini, S., Chen, J., Di Toro, G., Spagnuolo, E., Di Felice, F., Wang, H., Si, J. and Sheu, H.S., Frictional properties of the Longmenshan‐fault‐belt gouges from WFSD‐3 and implications for earthquake rupture propagation. Journal of Geophysical Research: Solid Earth, p.e2022JB024081.
Kuo, L.-W., Wu, W.-J., Kuo, C.-W., Smith, S. A. F., Lin, W.-T., Wu, W.-H., & Huang, Y.-H. (2021). Frictional strength and fluidization of water-saturated kaolinite gouges at seismic slip velocities. Journal of Structural Geology, 150, 104419. doi:10.1016/j.jsg.2021.104419
Lamadrid, Hector M.; Rimstidt, J. Donald; Schwarzenbach, Esther M.; Klein, Frieder; Ulrich, Sarah; Dolocan, Andrei; Bodnar, Robert J. (2017). Effect of water activity on rates of serpentinization of olivine. Nature Communications, 8, 16107–. doi:10.1038/ncomms16107
Lo, C. H., and T. F. Yui (1996). 40Ar/39Ar dating of high-pressure rocks in the Tananao basement complex, Taiwan. J. Geol. Soc. China, 39, 13–30.
Nguyen Thi Trinh (2021). The effect of fluid drainage on the frictional strength of water-saturated kaolinite during seismic slip. Master thesis, National Central University, Taiwan.
Niemeijer, A., G. Di Toro, S. Nielsen, and F. Di Felice (2011). Frictional melting of gabbro under extreme experimental conditions of normal stress, acceleration, and sliding velocity, J. Geophys. Res., 116, B07404, doi:10.1029/2010JB008181.
Proctor, B. P.; Mitchell, T. M.; Hirth, G.; Goldsby, D.; Zorzi, F.; Platt, J. D.; Di Toro, G. (2014). Dynamic weakening of serpentinite gouges and bare surfaces at seismic slip rates. Journal of Geophysical Research: Solid Earth, 119(11), 8107–8131. doi:10.1002/2014JB011057
Reches, Z. E., & Lockner, D. A. (2010). Fault weakening and earthquake instability by powder lubrication. Nature, 467(7314), 452-455.
Rice, J. R. (1999). Flash heating at asperity contacts and rate-dependent friction. Eos Trans. AGU, 80(46), F471.
Rice, J. R. (2006). Heating and weakening of faults during earthquake slip. Journal of Geophysical Research: Solid Earth, 111(B5).
Rooney, J. S., Tarling, M. S., Smith, S. A. F. & Gordon, K. C. Submicron Raman spectroscopy mapping of serpentinite fault rocks. J. Raman Spectrosc. 49, 279–286 (2018).
Rüpke, L.H., Morgan, J.P., Hort, M., and Connolly, J.A.D. (2004). Serpentine and the subduction zone water cycle: Earth and Planetary Science Letters, v. 223, p. 17–34, doi:10.1016/j.epsl .2004.04.018.
Scholz, C. H. (2002), The Mechanics of Earthquakes and Faulting, Cambridge Univ. Press, Cambridge, U. K.
Shimamoto T, Tsutsumi A (1994). A new rotary-shear high-speed frictional testing machine: its basic design and scope of research. J Tecton Res Group Jpn 39:65–78. (in Japanese with English abstract)
Sibson, R. H. (1975). Generation of pseudotachylyte by ancient seismic faulting. Geophysical Journal International, 43(3), 775-794.
Spray, J. G. (2005). Evidence for melt lubrication during large earthquakes, Geophys. Res. Lett., 32, L07301, doi:10.1029/2004GL022293.
Sulem, J., & Famin, V. (2009). Thermal decomposition of carbonates in fault zones: Slip‐weakening and temperature‐limiting effects. Journal of Geophysical Research: Solid Earth, 114(B3).
Tarling, M.S., Smith, S.A.F., Negrini, M. et al. An evolutionary model and classification scheme for nephrite jade based on veining, fabric development, and the role of dissolution–precipitation. Sci Rep 12, 7823 (2022). https://doi.org/10.1038/s41598-022-11560-7
Tarling, Matthew S.; Smith, Steven A. F.; Viti, Cecilia; Scott, James M. (2018). Dynamic earthquake rupture preserved in a creeping serpentinite shear zone. Nature Communications, 9(1), 3552–. doi:10.1038/s41467-018-05965-0
Terzaghi, K., 1923. Die Berechnung der Durchla ̈ssigkeitsziffer des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen. O ̈ sterreichische Akademie der Wissenschaften in Wien. Mathematisch Naturwissenschaftliche Kl. 132, 125e138.
Tesei, T.; Harbord, C. W. A.; De Paola, N.; Collettini, C.; Viti, C. (2018). Friction of Mineralogically Controlled Serpentinites and Implications for Fault Weakness. Journal of Geophysical Research: Solid Earth. doi:10.1029/2018JB016058
Trinh, Nguyen Thi (2021). The effect of fluid drainage on the frictional strength of water-saturated kaolinite during seismic slip. Master thesis. National Central University (NCU).
Tsutsumi, Akito; Shimamoto, Toshihiko (1997). High-velocity frictional properties of gabbro. Geophysical Research Letters, 24(6), 699–702. doi:10.1029/97gl00503
Violay, M., S. Nielsen, B. Gibert, E. Spagnuolo, A. Cavallo, P. Azais, S. Vinciguerra, and G. Di Toro (2014). Effect of water on the frictional behavior of cohesive rocks during earthquakes, Geology, 42(1), 27–30, doi:10.1130/G34916.1.
Viti, C., & Hirose, T. (2010). Thermal decomposition of serpentine during coseismic faulting: Nanostructures and mineral reactions. Journal of Structural Geology, 32(10), 1476-1484.
Wu, Wei-Hsin, Li-Wei Kuo and Hsiu-Ching Hsiao (2020) Micro-scale deformation evidence in serpentinite (and nephrite) in Yuli belt, eastern Taiwan. Journal of the National Taiwan Museum, 73(2), p.1-12. DOI: 10.6532/JNTM.202006_73(2).02
Yang, Che-Ming; Yu, Wei-Lun; Dong, Jia-Jyun; Kuo, Chih-Yu; Shimamoto, Toshihiko; Lee, Chyi-Tyi; Togo, Tetsuhiro; Miyamoto, Yuki (2014). Initiation, movement, and run-out of the giant Tsaoling landslide — What can we learn from a simple rigid block model and a velocity–displacement dependent friction law? Engineering Geology, 182(), 158–181. doi:10.1016/j.enggeo.2014.08.008
Yen, T. P. (1963). The metamorphic belts within the Tananao Schist terrain of Taiwan. Proc. Geol. Soc. China, 6, 72–74. |